| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 ①假设f(a)=a,当a≥0时,则$\sqrt{a}$=a,解得a=1或0;当a<0时,则a2+4a+2=a,解得a=-1或-2.
②假设f(f(a))=a,对a分类讨论,以此类推即可得出.
解答 解:①假设f(a)=a,当a≥0时,则$\sqrt{a}$=a,解得a=1或0;当a<0时,则a2+4a+2=a,解得a=-1或-2.
②假设f(f(a))=a,当a≥0时,则f(a)=$\sqrt{a}$,f(f(a))=f($\sqrt{a}$)=$\sqrt{\sqrt{a}}$,∴$\sqrt{\sqrt{a}}$=a,解得a=1或0;以此类推:当a≥0时,a=1或0.
当a<0时,则f(a)=a2+4a+2,f(f(a))=(a2+4a+2)2+4(a2+4a+2)+2=a,∴a2+4a+2=a,解得a=-1或-2.以此类推:当a<0时,
a=-1或-2.
综上可得:实数a的个数是4.
故选:C.
点评 本题考查了一元二次方程的解法、复合函数的性质的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ 或 $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2)<f(-$\frac{3}{2}$)<f(-1) | B. | f(-$\frac{3}{2}$)<f(-1)<f(2) | C. | f(2)<f(-1)<f(-$\frac{3}{2}$) | D. | f(2)<f(-$\frac{3}{2}$)<f(-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③④ | B. | ①②④ | C. | ①④ | D. | ①③ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com