精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+2(x<0)}\\{\sqrt{x}(x≥0)}\end{array}\right.$,若对任意n∈N*,f(f(f…f(a)))=a(n个f),则实数a的个数是(  )
A.2B.3C.4D.5

分析 ①假设f(a)=a,当a≥0时,则$\sqrt{a}$=a,解得a=1或0;当a<0时,则a2+4a+2=a,解得a=-1或-2.
②假设f(f(a))=a,对a分类讨论,以此类推即可得出.

解答 解:①假设f(a)=a,当a≥0时,则$\sqrt{a}$=a,解得a=1或0;当a<0时,则a2+4a+2=a,解得a=-1或-2.
②假设f(f(a))=a,当a≥0时,则f(a)=$\sqrt{a}$,f(f(a))=f($\sqrt{a}$)=$\sqrt{\sqrt{a}}$,∴$\sqrt{\sqrt{a}}$=a,解得a=1或0;以此类推:当a≥0时,a=1或0.
当a<0时,则f(a)=a2+4a+2,f(f(a))=(a2+4a+2)2+4(a2+4a+2)+2=a,∴a2+4a+2=a,解得a=-1或-2.以此类推:当a<0时,
a=-1或-2.
综上可得:实数a的个数是4.
故选:C.

点评 本题考查了一元二次方程的解法、复合函数的性质的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),右焦点F到渐近线的距离为2,F到原点的距离为3,则双曲线C的离心率e为(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间四边形ABCD中,CD=2$\sqrt{3}$,AB=2,EF=1,E、F分别是BC、AD的中点,则EF、AB所成的角(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{π}{3}$ 或 $\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列命题,其中正确的个数是(  )
①空集没有子集;
②空集是任何一个集合的真子集;
③任何一个集合都有两个或两个以上的子集;
④若集合B⊆A,则若元素不属于A,则必不属于B.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若平面α内有无数条直线与平面β平行,则α与β的位置关系是(  )
A.平行B.相交C.平行或相交D.重合

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在正方体ABCD-A1B1C1D1中,E为CC1的中点,则直线AE与平面ABCD所成角的正切值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{4}$C.$\frac{2\sqrt{2}}{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若偶函数f(x)在[1,+∞)上是减函数,则下列关系式中成立的是(  )
A.f(2)<f(-$\frac{3}{2}$)<f(-1)B.f(-$\frac{3}{2}$)<f(-1)<f(2)C.f(2)<f(-1)<f(-$\frac{3}{2}$)D.f(2)<f(-$\frac{3}{2}$)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}的公差d<0,令函数fi(x)=|x-ai|+ai,g(x)=min{fi(x)},其中i=1,2,…,n;现有如下四个结论:①g(x)=fn(x);②g(x+d)=g(x)+d;③g(x)max=a1;④g(x)min=an,其中正确的命题序号为(  )
A.①③④B.①②④C.①④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的通项公式为an=3en,请化简:lna1+lna2+…+lnan

查看答案和解析>>

同步练习册答案