| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | 2$\sqrt{2}$ |
分析 由EC⊥ABCD,得到∠EAC是直线AE与平面ABCD所成的角,由此能求出直线AE与平面ABCD所成角的正切值.
解答 解:∵EC⊥ABCD,
∴∠EAC是直线AE与平面ABCD所成的角,
设正方体ABCD-A1B1C1D1中棱长为a,
则AC=$\sqrt{{a}^{2}+{a}^{2}}$=$\sqrt{2}a$,
∵E为CC1的中点,∴CE=$\frac{a}{2}$,
∴tan∠EAC=$\frac{EC}{AC}$=$\frac{\frac{a}{2}}{\sqrt{2}a}$=$\frac{\sqrt{2}}{4}$.
故选:B.
点评 本题考查线面角的正切值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{5}}{16}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{51}}{17}$ | D. | $\frac{\sqrt{57}}{19}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{3}$,$\frac{π}{2}$] | B. | [$\frac{π}{3}$,$\frac{4π}{3}$] | C. | [$\frac{π}{3}$,π] | D. | [0,π] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com