精英家教网 > 高中数学 > 题目详情
8.已知数列{an}中,a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{a_n}-2,({a_n}>2)\\-{a_n}+3,({a_n}≤2)\end{array}$(n∈N*),记Sn=a1+a2+…+an,若Sn=2015,则n=1343.

分析 a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{a_n}-2,({a_n}>2)\\-{a_n}+3,({a_n}≤2)\end{array}$(n∈N*),可得a2=-a1+3=3-a∈[1,3).对a分类讨论:①当a∈[1,2]时,3-a∈[1,2],∴a3=-a2+3=a,….②当a∈(0,1)时,3-a∈(2,3),可得a3=a2-2=1-a∈(0,1),∴a4=-a3+3=a+2∈(2,3),a5=a4-2,对n分类讨论即可得出.

解答 解:∵a1=a(0<a≤2),an+1=$\left\{\begin{array}{l}{a_n}-2,({a_n}>2)\\-{a_n}+3,({a_n}≤2)\end{array}$(n∈N*),
∴a2=-a1+3=3-a∈[1,3).
①当a∈[1,2]时,3-a∈[1,2],∴a3=-a2+3=a,….
∴当n=2k-1,k∈N*时,a1+a2=a+3-a=3,∴S2k-1=3(k-1)+a=2015,a=1时舍去,a=2时,k=672,此时n=1343;
当n=2k,k∈N*时,a1+a2=a+3-a=3,∴S2k=3k=2015,k=671+$\frac{2}{3}$,不是整数,舍去;
②当a∈(0,1)时,3-a∈(2,3),∴a3=a2-2=1-a∈(0,1),∴a4=-a3+3=a+2∈(2,3),a5=a4-2=a∈(2,3),….
当n=4k,k∈N*时,a1+a2+a3+a4=a+3-a+1-a+a+2=6,∴S4k=6k=2015,k不为整数,舍去;
当n=4k-1,k∈N*时,a1+a2+a3=a+3-a+1-a=4-a,∴S4k-1=6(k-1)+(4-a)=2015,舍去;
当n=4k-2,k∈N*时,a1+a2=3,∴S4k-2=6(k-1)+3=2015,舍去.
当4k-3,k∈N*时,∴S4k-2=6(k-1)+a=2015,舍去.
综上可得:n=1343.
故答案为:1343.

点评 本题考查了分段数列的性质、分类讨论方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.计算下列各式的值:
(1)$\frac{lg12}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$;
(2)($\frac{25}{9}$)0.5+0.1-2+($\sqrt{8}$)${\;}^{{\;}^{\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.比较大小:$2+\root{3}{7}$<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图示中的幂函数在第一象限的图象,则下面四个选项中正确的是(  )
A.a+b+c+d为正数B.b+c+d-a可能为零
C.a-b-c-d为负数D.b×c×d×a符号不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间四边形ABCD中,CD=2$\sqrt{3}$,AB=2,EF=1,E、F分别是BC、AD的中点,则EF、AB所成的角(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{π}{3}$ 或 $\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆Г过点(1,1)、(1,3)、(2,2),P是圆Г的一个动点,若A(-3,4),O为坐标原点,则$\overrightarrow{OP}$•$\overrightarrow{OA}$的最大值为(  )
A.0B.4C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列命题,其中正确的个数是(  )
①空集没有子集;
②空集是任何一个集合的真子集;
③任何一个集合都有两个或两个以上的子集;
④若集合B⊆A,则若元素不属于A,则必不属于B.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在正方体ABCD-A1B1C1D1中,E为CC1的中点,则直线AE与平面ABCD所成角的正切值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{4}$C.$\frac{2\sqrt{2}}{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知集合A={x|log2(a-x)≤2},集合B={x|x2-3x+2=0}.
(1)若A∩B=B,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案