精英家教网 > 高中数学 > 题目详情
2.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),右焦点F到渐近线的距离为2,F到原点的距离为3,则双曲线C的离心率e为(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{2}$

分析 由题意,双曲线焦点到渐近线的距离为b,又b2=c2-a2,代入得a,即可求得双曲线C的离心率.

解答 解:由题意双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),右焦点F到渐近线的距离为2,F到原点的距离为3,
双曲线焦点到渐近线的距离为b=2,c=3.
又b2=c2-a2,代入得a2=5,解得e=$\frac{3}{\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$,
故选:B.

点评 本题考查双曲线的简单性质,考查双曲线中几何量之间的关系,考查数形结合的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|-2≤x≤2},非空集合C={x|2a≤x≤a+1},若C⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+4y2-2xy=4,则x+2y的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.记函数f(x)=$\sqrt{2-\frac{x+3}{x+1}}$的定义域为A,g(x)=$\sqrt{(x-a-1)(2a-x)}$(a<1)的定义域为B.
(1)求A;
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.y=$\sqrt{(\frac{1}{2})^{2x-1}-\frac{1}{16}}$的定义域是(-∞,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+alnx.
(Ⅰ)当a=-2时,求函数f(x)的单调区间和极值;
(Ⅱ)若g(x)=f(x)+$\frac{2}{x}$在[1,+∞)上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若直线3x-4y-m=0(m>0)与圆(x-3)2+(y-4)2=4相切,则实数m的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=-f(2a-x),则称f(x)为“准奇函数”.给定下列函数:①f(x)=$\frac{1}{x+1}$,②f(x)=(x+1)2;③f(x)=x3;④f(x)=sin(x+1),其中的“准奇函数”是①④(写出所有“准奇函数”的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+2(x<0)}\\{\sqrt{x}(x≥0)}\end{array}\right.$,若对任意n∈N*,f(f(f…f(a)))=a(n个f),则实数a的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案