精英家教网 > 高中数学 > 题目详情
在极坐标系中,求点M (2,
 π 
6
)
关于直线θ=
 π 
4
的对称点N的极坐标,并求MN的长.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,把点的极坐标化为直角坐标,求得点N的直角坐标,可得线段MN的长,再把点N的直角坐标化为极坐标.
解答: 解:在直角坐标系中,点M(
3
,1),直线即y=x,
可得点M关于直线的对称点N的直角坐标为(1,
3
),
∴线段MN的长为
(1-
3
)
2
+(
3
-1)
2
=
8-4
3
=2
2-
3
点评:本题主要考查极坐标方程与直角坐标方程的互化,用点的极坐标刻画点的位置,求出点N的直角坐标,是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={1,2,3,4},B={2,3,5},则A∩B=(  )
A、{5}
B、{2,3}
C、{2,3,5}
D、{1,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
5
2i-1
的共轭复数是(  )
A、2i+1B、-1-2i
C、2i-1D、1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<α<
π
2
,0<β<
π
2
,sinα=
3
5
,cosβ=
5
13
,则cos(α+β)=(  )
A、
56
65
B、
16
65
C、
63
65
D、-
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(2x+
π
6
)的一条对称轴是(  )
A、直线x=
π
6
B、直线x=
12
C、直线x=
π
3
D、直线x=-
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的正三角形△ABC所在平面与等腰直角三角形DBC所在平面相互垂直,已知DB=DC,AE=1,AE⊥平面ABC.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求证:BD⊥平面CDE;
(Ⅲ)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
,x∈R)的图象的一个对称中心的横坐标为-
4
3
,它在y轴右侧的第一个最大值点和第一个最小值点的坐标分别为(x0,3)和(x0+8,-3).
(1)求此函数的解析式f(x),并指出f(x)的对称轴的方程;
(2)先把f(x)沿y轴向下平移一个单位,然后纵坐标不变,横坐标缩短为原来的
π
4
,得到函数g(x),再把g(x)图象上的所有点向右平移
π
3
个单位,得到函数h(x),若x∈[0,π]时,h(x)>
α
1+sinx
恒成立,求实数α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高二年级有男生1000人,女生800人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频数统计表如下:
表一:男生                                    表二:女生
等级 优秀 合格 尚待改进 等级 优秀 合格 尚待改进
频数 15 x     5 频数  15   3    y
男生 女生 总计
优秀 15 15 30
非优秀
总计 45
(1)计算x,y的值;
(2)由表一表二中统计数据完成2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
参考公式:x2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(其中n=a+b+c+d)临界值表:
P(x2≥k) 0.100 0.050 0.010
k 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

某位老师对两个班100名同学进行了是否经常做家务的调查,数据如下表:
班别经常做家务不经常做家务总数
一班203252
二班252348
列总数4555100
如果随机地问这两个班中的一名学生,下面事件发生的概率是多少?
(1)经常做家务;
(2)是二班的同学且不经常做家务.

查看答案和解析>>

同步练习册答案