精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=loga(x+4)-1(a>0且a≠1)的图象恒过定点A,若直线$\frac{x}{m}+\frac{y}{n}=-2$(m,n>0)也经过点A,则3m+n的最小值为(  )
A.16B.8C.12D.14

分析 求出函数f(x)的图象恒过定点A的坐标,利用基本不等式的性质即可求解3m+n的最小值.

解答 解:由题意,函数f(x)=loga(x+4)-1(a>0且a≠1),
令x+4=1,可得x=-3,带入可得y=-1
∴图象恒过定点A(-3,-1).
∵直线$\frac{x}{m}+\frac{y}{n}=-2$(m,n>0)也经过点A,
∴$\frac{3}{m}+\frac{1}{n}=2$,即$\frac{3}{2m}+\frac{1}{2n}=1$.
那么:3m+n=(3m+n)($\frac{3}{2m}+\frac{1}{2n}$)=$\frac{9}{2}+\frac{1}{2}+\frac{3n}{2m}+\frac{3m}{2n}$
≥2$\sqrt{\frac{3n}{2m}×\frac{3m}{2n}}$+5=8.(当且仅当n=m=2时,取等号)
∴3m+n的最小值为8.
故选B.

点评 本题考了对数函数的恒过定点的求法和基本不等式的运用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知α是三角形的内角,且sinα+cosα=$\frac{1}{5}$.
(1)求tanα的值;
(2)$\frac{{sin({\frac{3π}{2}+α})sin({\frac{π}{2}-α}){{tan}^3}({π-α})}}{{cos({\frac{π}{2}+α})cos({\frac{3π}{2}-α})}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a=(8,2,4)$,$\overrightarrow b=(x,1,2)$,若$\overrightarrow a$∥$\overrightarrow b$,则x的值为(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数x2+y2=2,则3x+4y的最大值是5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的奇函数f(x)对任意x1,x2(x1≠x2)都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,若实数m,n满足f(m2+4m+12)+f(n2-6n)<0,则|m-2n-4|的取值范围为(  )
A.$[\frac{{12\sqrt{5}}}{5}-1,\frac{{12\sqrt{5}}}{5}+1]$B.$(\frac{{12\sqrt{5}}}{5}-1,\frac{{12\sqrt{5}}}{5}+1)$C.$[12-\sqrt{5},12+\sqrt{5}]$D.$(12-\sqrt{5},12+\sqrt{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC,且a>c,cosB=$\frac{1}{4}$,则$\frac{c}{a}$=(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知如下等式:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;…,以此类推,则2040会出现在第31个等式中.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程$\widehaty=3-5x$,变量x增加一个单位时,y平均增加5个单位
③线性回归方程$\widehaty=\widehatbx+\widehata$必过$(\overline x,\overline y)$;
④在一个2×2列联表中,由计算得K2=13.079,则有99.9%的把握确认这两个变量间有关系.
其中错误的个数是(  )
本题可以参考独立性检验临界值表
P(K2≥k)0.500.400.250.150.100.050.0250.010.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z(1-2i)=2+i,则z=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

同步练习册答案