精英家教网 > 高中数学 > 题目详情
7.已知如下等式:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;…,以此类推,则2040会出现在第31个等式中.

分析 从已知等式分析,发现规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,即可得出结论.

解答 解:①2+4=6;  
②8+10+12=14+16;
③18+20+22+24=26+28+30,…
其规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,
所以第n个等式的首项为2[1+3+…+(2n-1)]=2×$\frac{n(1+2n-1)}{2}$=2n2
当n=31时,等式的首项为2×312=1922,
当n=32时,等式的首项为2×322=2048,
所以2040在第31个等式中,
故答案为:31

点评 本题考查归纳推理,难点是根据能够找出数之间的内在规律,考查观察、分析、归纳的能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.△ABC的内角,角A,B,C的对边分别为a,b,c,已知,a=$\sqrt{5},cosA=\frac{2}{3}$,c=2则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=log${\;}_{\frac{1}{2}}$(ax2-2x+4)(a∈R),若f(x)的值域为(-∞,1],则a的值为$\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=loga(x+4)-1(a>0且a≠1)的图象恒过定点A,若直线$\frac{x}{m}+\frac{y}{n}=-2$(m,n>0)也经过点A,则3m+n的最小值为(  )
A.16B.8C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{m}$=(sinA,$\frac{1}{2}$)与向量$\overrightarrow{n}$=(3,sinA+$\sqrt{3}$cosA)共线,其中A是△ABC的内角.
(1)求角A的大小.
(2)若BC=4,求△ABC的面积S的最大值,并判断S取得最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某研究机构在对具有线性相关的两个变量x和y进行统计分析时,得到数据如下:
x1234
y4.5432.5
由表中的数据求得y关于x的线性回归方程为$\widehaty$=-0.7x+a,则a等于(  )
A.10.5B.5.25C.5.2D.5.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某班5名学生的数学和物理成绩如下表:
ABCDE
数学成绩(x)8876736663
物理成绩(y)7865716461
(1)求物理成绩y对数学成绩x的回归直线方程;
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.现有编号为A,B,C,D的四本书,将这4本书平均分给甲、乙两位同学,则A,B两本书不被同一位同学分到的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}=1({a>0})$,以原点为圆心,双曲线的实轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形的ABCD的面积为$2\sqrt{3}a$,则a的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$或$2\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案