精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=lnx+$\frac{ax}{x-1}$
(1)若函数有两个极值点,求实数a的取值范围;
(2)对所有的a≥$\frac{1}{2}$,m∈(0,1),n∈(1,+∞),求f(n)-f(m)的最小值.

分析 (1)求出函数的导数,得到关于a的不等式组,解出即可;
(2)求出f(x)的单调区间,得到x1x2=1,x1+x2=a+2,x2-x1=$\sqrt{{a}^{2}+4a}$以及x1,x2,代入f(n)-f(m)的表达式即可.

解答 解:(1)f′(x)=$\frac{{x}^{2}-(a+2)x+1}{{x(x-1)}^{2}}$,
由题意得x2-(a+2)x+1=0在x>0且x≠1有2个不同实根,
∴$\left\{\begin{array}{l}{\frac{a+2}{2}>0}\\{{(a+2)}^{2}-4>0}\end{array}\right.$且1-(a+2)+1≠0
解得:a>0;
(2)由于1-(a+2)+1=-a<0,
∴由(1)可得g(x)=x2-(a+2)x+1在(0,1),(1,+∞)各有1个零点,
设为x1,x2,且函数f(x)在(0,x1)递增,在(x1,1)递减,在(1,x2)递减,在(x2,+∞)递增,
∴f(n)-f(m)≥f(x2)-f(x1)=ln$\frac{{x}_{2}}{{x}_{1}}$+a$\frac{{{x}_{1}-x}_{2}}{{{x}_{1}x}_{2}-{(x}_{1}{+x}_{2})+1}$,
∵x2-(a+2)x+1=0的两个根是x1,x2
∴x1x2=1,x1+x2=a+2,x2-x1=$\sqrt{{a}^{2}+4a}$,
x1=$\frac{a+2-\sqrt{{a}^{2}+4a}}{2}$,x2=$\frac{a+2+\sqrt{{a}^{2}+4a}}{2}$,
代入得:ln$\frac{{x}_{2}}{{x}_{1}}$+a$\frac{{{x}_{1}-x}_{2}}{{{x}_{1}x}_{2}-{(x}_{1}{+x}_{2})+1}$=ln$\frac{{(a+2+\sqrt{{a}^{2}+4a})}^{2}}{4}$+$\sqrt{{a}^{2}+4a}$,
当a=$\frac{1}{2}$时取最小值ln4+$\frac{3}{2}$.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{x}{x+b}$(b≠0且b是常数).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的条件下,求证:f(x)在(-∞,-1)上是增函数;
(3)若函数f(x)在(1,+∞)上是减函数,求负数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算下列各式的值,写出必要的计算过程.
(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$       
(2)(log43+log83)(log32+log92)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)={a^x}+log_a^{(x+1)}$
(1)当a=2时,求f(x)在x∈[0,1]的最大值;
(2)当0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和为a,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知A、B、C是直线l上的三点,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足:$\overrightarrow{OA}-[{y+2f'(1)}]\overrightarrow{OB}+ln(x+1)\overrightarrow{OC}=0$.则函数y=f(x)的表达式f(x)=ln(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知P(x0,y0)是椭圆C:$\frac{x^2}{a^2}+{y^2}$=1上一点,过原点的斜率分别为k1,k2的两条直线与圆(x-x02+(y-y02=$\frac{4}{5}$分别相切于A,B两点.
(1)若椭圆离心率为$\frac{{\sqrt{3}}}{2}$,求椭圆的标准方程;
(2)在(1)的条件下,求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=$\frac{π}{3}$,PA⊥底面ABCD,PA=AB=2,M为PA的中点,N为BC的中点
(1)证明:直线MN∥平面PCD;
(2)求异面直线AB与MD所成角的余弦值;
(3)求点B到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,BC⊥PB,△BCD为等边三角形,PA=BD=$\sqrt{3}$,AB=AD,E为PC的中点.
(1)求证:BC⊥AB;
(2)求AB的长;
(3)求平面BDE与平面ABP所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各组中的两个函数是相等函数的为(  )
A.y=x2-2x-1与y=t2-2t-1B.y=1与 $y=\frac{x}{x}$
C.y=6x与$y=6\sqrt{x^2}$D.$y={(\sqrt{x})^2}$与$y=\root{3}{x^3}$

查看答案和解析>>

同步练习册答案