精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=$\frac{π}{3}$,PA⊥底面ABCD,PA=AB=2,M为PA的中点,N为BC的中点
(1)证明:直线MN∥平面PCD;
(2)求异面直线AB与MD所成角的余弦值;
(3)求点B到平面PCD的距离.

分析 (1)取PD的中点Q,连接QM,QC.利用三角形中位线定理与平行四边形的判定与性质定理可得NM∥QC,再利用线面平行的判定定理即可判断出结论.
(2)由CD∥AB,可得∠MDC为异面直线AB与MD所成的角(或其补角),在△MDC中利用余弦定理即可得出.
(3)由AB∥平面PCD,可得点A和点B到平面PCD的距离相等.取CD的中点E,连接AE,PE,过A作AH⊥PE,垂足为H.在△PAE中,利用三角形面积计算公式即可得出.

解答 (1)证明:取PD的中点Q,连接QM,QC.
∵QM∥AD,AD∥CN,∴MQ∥CN,又MQ=CN=$\frac{1}{2}$AD.
∴四边形MNCQ是平行四边形.
∴NM∥QC,又MN?平面PCD,CQ?平面PCD,
∴MN∥平面PCD.
(2)解:∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角).
∵∠ABC=$\frac{π}{3}$,∴AC=CD=AD=2,
∵PA⊥平面ABCD,∴MA⊥AC,MA⊥AD.
又MA=1,AC=AD=2,MC=MD=$\sqrt{5}$.
CD=2,∴cos∠MDC=$\frac{(\sqrt{5})^{2}+{2}^{2}-(\sqrt{5})^{2}}{2×\sqrt{5}×2}$=$\frac{\sqrt{5}}{5}$.
∴AB与MD所成角余弦值为$\frac{\sqrt{5}}{5}$.
(3)解:∵AB∥平面PCD,∴点A和点B到平面PCD的距离相等.
取CD的中点E,连接AE,PE,过A作AH⊥PE,垂足为H.
∠ABC=$\frac{π}{3}$,∴AC=CD=AD,∴AE⊥CD.
∵PA⊥平面ABCD,PA⊥CD,∴CD⊥平面PAE,∴CD⊥PA.
∵CD⊥平面PAE,∴CD⊥AH,∴AH⊥平面PCD,
∴AH即为点B到平面PCD的距离.
∵PA=2,AE=$\sqrt{3}$,PA⊥AE,∴AH=$\frac{PA×AE}{\sqrt{P{A}^{2}+A{E}^{2}}}$=$\frac{2\sqrt{21}}{7}$.

点评 本题考查了三角形中位线定理、平行四边形的判定与性质定理、菱形的性质、线面平行与垂直的判定定理与性质定理、异面直线所成的角、余弦定理、点到平面的距离、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=$\frac{3}{5}$$\sqrt{t}$,Q=$\frac{1}{5}$t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:
(Ⅰ)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;
(Ⅱ)怎样将资金分配给甲、乙两种商品,能使得总利润y达到最大值,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)={(\frac{1}{2})^x}$-2的图象不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+$\frac{ax}{x-1}$
(1)若函数有两个极值点,求实数a的取值范围;
(2)对所有的a≥$\frac{1}{2}$,m∈(0,1),n∈(1,+∞),求f(n)-f(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各式的值:
(1)2log510+log50.25;
(2)${({\frac{8}{125}})^{-\frac{1}{3}}}-{({-\frac{3}{5}})^0}+{16^{0.75}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\frac{cos6x}{{2}^{x}-{2}^{-x}}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.使不等式${2^x}>\frac{8}{x}$成立的x的取值范围为(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,既是奇函数又是增函数的是(  )
A.y=x+1B.y=-x3C.y=x|x|D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知正方形的面积为100,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此实验数据为依据,可以估计出阴影部分的面积约为(  )
A.53B.43C.47D.57

查看答案和解析>>

同步练习册答案