精英家教网 > 高中数学 > 题目详情
10.销售甲、乙两种商品所得利润分别是P(万元)和Q(万元),它们与投入资金t(万元)的关系有经验公式P=$\frac{3}{5}$$\sqrt{t}$,Q=$\frac{1}{5}$t.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(万元).求:
(Ⅰ)经营甲、乙两种商品的总利润y(万元)关于x的函数表达式;
(Ⅱ)怎样将资金分配给甲、乙两种商品,能使得总利润y达到最大值,最大值是多少?

分析 (Ⅰ利润函数为y=甲商品所得的利润P+乙商品所得的利润y=$\frac{3}{5}\sqrt{x}$+$\frac{1}{5}$(3-x),x∈[0,3].
(Ⅱ)y=$\frac{3}{5}\sqrt{x}$+$\frac{1}{5}$(3-x)=-$\frac{1}{5}(\sqrt{x}-\frac{3}{2})^{2}+\frac{21}{20}$.由二次函数的性质,得函数的最大值以及对应的x值.

解答 解:(Ⅰ)根据题意,得y=$\frac{3}{5}\sqrt{x}$+$\frac{1}{5}$(3-x),x∈[0,3].…(5分)
(Ⅱ)y=$\frac{3}{5}\sqrt{x}$+$\frac{1}{5}$(3-x)=-$\frac{1}{5}(\sqrt{x}-\frac{3}{2})^{2}+\frac{21}{20}$.
∵$\frac{3}{2}∈[0,3]$,∴当$\sqrt{x}$=$\frac{3}{2}$时,即x=$\frac{9}{4}$,3-x=$\frac{3}{4}$时,ymax=$\frac{21}{20}$.
即给甲、乙两种商品分别投资$\frac{9}{4}$万元、$\frac{3}{4}$万元可使总利润达到最大值$\frac{21}{20}$万元.…(12分)

点评 本题考查了可化为二次函数模型的根式函数的应用,确定函数的解析式是关键,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若某几何体的三视图如图所示,则此几何体的体积等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$内一点M(l,l)的直线l交椭圆于两点,且M为线段AB的中点,则直线l的方程为3x+4y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{x}{x+b}$(b≠0且b是常数).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的条件下,求证:f(x)在(-∞,-1)上是增函数;
(3)若函数f(x)在(1,+∞)上是减函数,求负数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$也共面,则下列说法正确的是(  )
A.若$\overrightarrow{b}$与$\overrightarrow{c}$不共线,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$共面B.若$\overrightarrow{b}$与$\overrightarrow{c}$共线,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$共面
C.当且仅当$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$共面D.若$\overrightarrow{b}$与$\overrightarrow{c}$不共线,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$不共面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=3sinx+4cosx的最大值为(  )
A.25B.7C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=ax2-ax+3x+1的图象与x轴有且只有一个交点,那么a的值的集合为(  )
A.{1,9}B.{0,1,9}C.{0}D.{0,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算下列各式的值,写出必要的计算过程.
(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$       
(2)(log43+log83)(log32+log92)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=$\frac{π}{3}$,PA⊥底面ABCD,PA=AB=2,M为PA的中点,N为BC的中点
(1)证明:直线MN∥平面PCD;
(2)求异面直线AB与MD所成角的余弦值;
(3)求点B到平面PCD的距离.

查看答案和解析>>

同步练习册答案