精英家教网 > 高中数学 > 题目详情
12.已知A、B、C是直线l上的三点,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足:$\overrightarrow{OA}-[{y+2f'(1)}]\overrightarrow{OB}+ln(x+1)\overrightarrow{OC}=0$.则函数y=f(x)的表达式f(x)=ln(x+1).

分析 利用 A、B、C共线时,$\overrightarrow{OA}$=λ$\overrightarrow{OB}$+(1-λ)$\overrightarrow{OC}$,建立等式①,对①求导数得到f′(1)的值,再把此值代入①,求出f(x)的解析式.

解答 解:∵A、B、C是直线l上的三点,
向量$\overrightarrow{OA}$满足:$\overrightarrow{OA}$=[y+2f′(1)]$\overrightarrow{OB}$-ln(x+1)$\overrightarrow{OC}$,
∴y+2 f′(1)-ln(x+1)=1  ①,
对①求导数得 y′-$\frac{1}{x+1}$=0,
∴f′(1)=$\frac{1}{2}$,
代入①式得:f(x)=ln(x+1),
故答案为:f(x)=ln(x+1).

点评 本题考查三个向量共线的性质以及求函数的导数的方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.方程x3-3x+1=0的一个根在区间(k,k+1)(k∈N )内,则k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y≥-1}\\{x+y≥1}\\{3x-y≤3}\end{array}\right.$,则该约束条件所围成的平面区域的面积是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)={(\frac{1}{2})^x}$-2的图象不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-0.96)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}+{[{(-\root{3}{2})^{-4}}]^{-\frac{3}{4}}}$
(2)已知14a=6,14b=7,用a,b表示log4256.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+$\frac{ax}{x-1}$
(1)若函数有两个极值点,求实数a的取值范围;
(2)对所有的a≥$\frac{1}{2}$,m∈(0,1),n∈(1,+∞),求f(n)-f(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各式的值:
(1)2log510+log50.25;
(2)${({\frac{8}{125}})^{-\frac{1}{3}}}-{({-\frac{3}{5}})^0}+{16^{0.75}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.使不等式${2^x}>\frac{8}{x}$成立的x的取值范围为(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量$\overrightarrow{m}$=(2a,1),$\overrightarrow{n}$=(2b-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求角A的大小;
(Ⅱ)若$a=\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

同步练习册答案