精英家教网 > 高中数学 > 题目详情
某校高三年级发展均衡,各班均有学生50人,全校共有20个平行班级.随机选择一个班,将他们的期中数学考试成绩分成六段:[40,50),[50,60),…,[90,100],得到如图所示频率分布直方图.
(1)请估计该校这20个班级中成绩不低于60分的人数;
(2)为了帮助学生提高数学成绩,该班班主任决定成立“二帮一”小组:对成绩在[40,50)内的每位同学,从成绩在[90,100]中选两位同学对其数学学习提供帮助,各组成员没有重复.已知甲成绩为42分,乙成绩为95分,求甲、乙恰好被安排在同一小组的概率.
考点:古典概型及其概率计算公式,频率分布直方图
专题:概率与统计
分析:(1)根据频率分布直方图,成绩不低于60分的频率,然后根据频数=频率×总数可求出所求;
(2)先算出成绩在[40,50)分数段内的人数,以及成绩在[90,100]分数段内的人数,列出所有的“二帮一”小组分组办法的基本事件,以及甲、乙两同学被分在同一小组的基本事件,最后利用古典概型的概率公式解之即可.
解答: 解:(1)根据频率分布直方图,
成绩不低于60分的频率为1-10×(0.004+0.010)=0.86.
由于该校高一年级共有学生50×20=1000人,
利用样本估计总体的思想,
可估计该校高一年级数学成绩不低于60分的人数为1000×0.86=860人.
(2)成绩在[40,50)分数段内的人数为50×0.04=2人
成绩在[90,100)分数段内的人数为50×0.1=5人,
将[40,50)内2人记为甲、A.[90,100)内5人记为乙、B、C、D、E.
“二帮一”小组有以下20种分组办法:
甲乙B,甲乙C,甲乙D,甲乙E,甲BC,甲BD,甲BE,甲CD,甲CE,甲DE,
A乙B,A乙C,A乙D,A乙E,
ABC,ABD,ABE,
ACD,ACEE,
ADE,
其中甲、乙两同学被分在同一小组有4种办法:甲乙B,甲乙C,甲乙D,甲乙E
所以甲乙两同学恰好被安排在同一小组的概率为P=
4
20
=
1
5
点评:本题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x+
1
0
3(
x
-x2)dx
f(x+2)
(x≥4)
(x<4)
,则f(log23)=(  )
A、13B、19C、37D、49

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1且cosA=
4
5
,则△ABC的外接圆的直径等于(  )
A、
4
5
B、
5
4
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2-a)x-2(1+lnx)+a.
(1)当a=1时,求f(x)的单调区间;
(2)若函数f(x)在区间(0,
1
2
)无零点,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
1
1-x
,记F(x)=2f(x)+g(x).
(1)求函数F(x)的定义域及其零点;
(2)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数fn(x)=x+
n
x
,(x>0,n≥1,n∈Z),以点(n,fn(n))为切点作函数y=fn(x)图象的切线ln,记函数y=fn(x)图象与三条直线x=n,x=n+1,ln所围成的区域面积为an
(Ⅰ)求an
(Ⅱ)求证:an
1
3n2

(Ⅲ)设Sn为数列{an}的前n项和,求证:Sn
5
9

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中向量,x∈R.
a
=(sin2x,
3
),
b
=(-1,sin(2x-
π
6
))
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)将函数f(x)的图象沿x轴向右平移,则至少平移多少个单位长度,才能使得到的函数g(x)的图象关于y轴对称?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-2-lnx(a∈R).
(Ⅰ)若f(x)在点(e,f(e))处的切线为x-ey-2e=0,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x>0时,求证:f(x)-ax+ex>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的各顶点都在同一球面上,若四面体A-B1CD1的表面积为8
3
,则球的体积为
 

查看答案和解析>>

同步练习册答案