精英家教网 > 高中数学 > 题目详情
7.已知M为抛物线y2=4x上一动点,F为这条抛物线的焦点,有一个定点A(3,2),则|MA|+|MF|的最小值=4.

分析 设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MA|+|MD|取得最小,进而可推断出当D,M,A三点共线时|MA|+|MD|最小,答案可得.

解答 解:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|,
∴要求|MA|+|MF|取得最小值,即求|MA|+|MD|取得最小,
当D,M,A三点共线时|MA|+|MD|最小,为3-(-1)=4.
故答案为:4.

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,A三点共线时|MA|+|MD|最小是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知3$\overrightarrow{a}$-2$\overrightarrow{b}$=(-2,0,4),$\overrightarrow{c}$=(-2,1,2),$\overrightarrow{a}$•$\overrightarrow{c}$=2,且|$\overrightarrow{b}$|=4.
(1)求cos<$\overrightarrow{b}$,$\overrightarrow{c}$>;
(2)记$\overrightarrow{d}$=(-2,0,4),确定实数k,使得($\overrightarrow{d}$+k$\overrightarrow{c}$)与($\overrightarrow{d}$-2$\overrightarrow{c}$)互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|y=log2(4-x2)},B={y|y=2x+1},则A∩B=(  )
A.B.(1,3)C.(1,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:?m∈R,使得函数f(x)=x2+(m-1)x2-2是奇函数,命题q:向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则“$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$”是:“$\overrightarrow{a}$$∥\overrightarrow{b}$”的充要条件,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设M是圆P:(x+5)2+y2=36上一动点,点Q的坐标为(5,0),若线段MQ的垂直平分线交直线PM于点N,则点N的轨迹方程为(  )
A.$\frac{x^2}{25}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{9}=1$C.$\frac{x^2}{25}-\frac{y^2}{9}=1$D.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sinxcosx-cos2x.
(1)求f(x)的最小正周期;
(2)求f(x)在区间$[\frac{π}{8},\frac{3π}{4}]$上的最小值,并求取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数i-i2在复平面内表示的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.f(x)=cosx+sinx的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.李师傅在建材商店购买了三根外围直径都为10cm的钢管,为了便于携带,他将三根钢管用铁丝紧紧捆住,截面如图所示,则铁丝捆扎一圈的长度为30+10πcm.

查看答案和解析>>

同步练习册答案