精英家教网 > 高中数学 > 题目详情
12.已知单调递增的等比数列{an}满足a1+a2+a3=7,且a3是a1,a2+5的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an+1,cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,记数列{cn}的前n项和为Tn.若对任意的n∈N*,不等式Tn≤k(n+4)恒成立,求实数k的取值范围.

分析 (Ⅰ)由题意知$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=7}\\{{a}_{1}+{a}_{1}q+5=2{a}_{1}{q}^{2}}\end{array}\right.$,从而求得;
(Ⅱ)化简bn=log2an+1=n,cn=$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,从而化简不等式为k≥$\frac{n}{(n+1)(n+4)}$=$\frac{1}{n+\frac{4}{n}+5}$恒成立;从而求得.

解答 解:(Ⅰ)设等比数列{an}的公比为q,
则$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=7}\\{{a}_{1}+{a}_{1}q+5=2{a}_{1}{q}^{2}}\end{array}\right.$,
解得,a1=1,q=2或q=-$\frac{2}{3}$(舍去);
故an=2n-1
(Ⅱ)bn=log2an+1=n,
cn=$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
故Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
要使Tn≤k(n+4)恒成立,
即k≥$\frac{n}{(n+1)(n+4)}$=$\frac{1}{n+\frac{4}{n}+5}$恒成立;
而n+$\frac{4}{n}$+5≥9,(当且仅当n=2时,等号成立);
故$\frac{1}{n+\frac{4}{n}+5}$≤$\frac{1}{9}$;
故实数k的取值范围为[$\frac{1}{9}$,+∞).

点评 本题考查了等比数列与等差数列的应用,同时考查了基本不等式与恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=1,(n+3)an+1=2nan(n∈N+),记bn=n(n+1)(n+2)an
(1)求证:{bn}为等比数列;
(2)设cn=$\frac{{a}_{n}}{3•{2}^{n}}$,且数列{cn}的前n项和为Sn,求证:Sn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a,b,c分别为内角A,B,C的对边,2bsinB=(2a+c)sinA+(2c+a)sinC.
(Ⅰ) 求B的大小;
(Ⅱ) 若b=$\sqrt{3}$,A=$\frac{π}{4}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+4x,x≤0\\ xlnx,x>0\end{array}$,g(x)=kx-1,若函数y=f(x)-g(x)有且仅有4个不同的零点.则实数k的取值范围为(  )
A.(1,6)B.(0,1)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在边长为2的菱形ABCD中,∠BAD=60°,P,Q分别是BC,BD的中点,则向量$\overrightarrow{AP}$与$\overrightarrow{AQ}$的夹角的余弦值为$\frac{3\sqrt{21}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α为锐角,则(1+$\frac{1}{sinα}$)(1+$\frac{1}{cosα}$)的最小值是(  )
A.3-2$\sqrt{2}$B.3$+2\sqrt{2}$C.$\sqrt{2}-1$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=lnx的图象总在函数g(x)=ax2-$\frac{1}{2}$(a>0)图象的下方,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$]B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,+∞)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a,b均为大于1的正数,且ab=100,则(lga)2+(lgb)2的最小值是(  )
A.1B.2C.$\frac{5}{2}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列程序运行的结果是5050.

查看答案和解析>>

同步练习册答案