精英家教网 > 高中数学 > 题目详情
2.在数列{an}中,a1=1,(n+3)an+1=2nan(n∈N+),记bn=n(n+1)(n+2)an
(1)求证:{bn}为等比数列;
(2)设cn=$\frac{{a}_{n}}{3•{2}^{n}}$,且数列{cn}的前n项和为Sn,求证:Sn<$\frac{1}{4}$.

分析 (1)由已知(n+3)an+1=2nan,得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{2n}{n+3}$,再由bn=n(n+1)(n+2)an,得bn+1=(n+1)(n+2)(n+3)an+1,作比后可得{bn}为公比是2的等比数列;
(2)求出等比数列{bn}的通项公式,代入bn=n(n+1)(n+2)an求得an.进一步代入cn=$\frac{{a}_{n}}{3•{2}^{n}}$,然后利用裂项相消法求得数列{cn}的前n项和为Sn,放缩得答案.

解答 证明:(1)由(n+3)an+1=2nan,得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{2n}{n+3}$,
又bn=n(n+1)(n+2)an
∴bn+1=(n+1)(n+2)(n+3)an+1
则$\frac{{b}_{n+1}}{{b}_{n}}=\frac{(n+1)(n+2)(n+3){a}_{n+1}}{n(n+1)(n+2){a}_{n}}$=$\frac{n+3}{n}•\frac{2n}{n+3}=2$,
∴{bn}为公比是2的等比数列;
(2)∵{bn}为公比是2的等比数列,且b1=6a1=6,
∴${b}_{n}=n(n+1)(n+2){a}_{n}=6•{2}^{n-1}=3•{2}^{n}$,
则${a}_{n}=\frac{3•{2}^{n}}{n(n+1)(n+2)}$,
∴cn=$\frac{{a}_{n}}{3•{2}^{n}}$=$\frac{1}{n(n+1)(n+2)}$=$\frac{1}{2}[\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}]$,
则${S}_{n}=\frac{1}{2}[\frac{1}{1×2}-\frac{1}{2×3}+\frac{1}{2×3}-\frac{1}{3×4}+…+\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}]$=$\frac{1}{4}-\frac{1}{2(n+1)(n+2)}<\frac{1}{4}$.

点评 本题考查数列递推式,考查了等比关系的确定,训练了裂项相消法求数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知{an}是首项为1,公比为q的等比数列,且a4,a6,a5成等差数列.
(Ⅰ)求{an}的前n项和Sn
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Tn,当n≥2时,比较Tn与bn的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.从6名男医生和3名女医生中选出5人组成一个医疗小组,若这个小组中必须男女医生都有,共有120种不同的组建方案(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数f(x)=x2+|x-a|+1,a>$\frac{1}{2}$,则f(x)的最小值为(  )
A.$\frac{3}{4}$+aB.$\frac{3}{4}$-aC.a2+1D.a2+$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}({x}^{3}+1),x≥0}\\{g(x)+3x,x<0}\end{array}\right.$为奇函数,则g(-2)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)是定义在R上且f(x+2)=f(2-x),f(7-x)=f(7+x),在闭区间[0,7]上,使f(x)=0的x值仅为1和3.
(1)判断函数f(x)的奇偶性;
(2)试求方程f(x)=0在闭区间[-2016,2016]上根的个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a∈R,“cos2α=0”是“sinα=cosα”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若sinα=$\frac{\sqrt{10}}{10}$,β=arccos(-$\frac{\sqrt{5}}{5}$),0<α<$\frac{π}{2}$,求证:α+β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知单调递增的等比数列{an}满足a1+a2+a3=7,且a3是a1,a2+5的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an+1,cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,记数列{cn}的前n项和为Tn.若对任意的n∈N*,不等式Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案