精英家教网 > 高中数学 > 题目详情
3.在△ABC中,a,b,c分别为内角A,B,C的对边,2bsinB=(2a+c)sinA+(2c+a)sinC.
(Ⅰ) 求B的大小;
(Ⅱ) 若b=$\sqrt{3}$,A=$\frac{π}{4}$,求△ABC的面积.

分析 (Ⅰ)由正弦定理,化简整理a2+c2-b2+ac=0,再由余弦定理,求得角B的大小,
(Ⅱ)由三角行的内角和定理,求得C及sinC,再由正弦定理,求得c的值,可求得三角形的面积.

解答 (Ⅰ)解:∵2bsinB=(2a+c)sinA+(2c+a)sinC,
由正弦定理得,2b2=(2a+c)a+(2c+a)c,…(1分)
化简得,a2+c2-b2+ac=0.…(2分)
∴$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{-ac}{2ac}=-\frac{1}{2}$.…(4分)
∵0<B<π,
∴B=$\frac{2π}{3}$.…(5分)
(Ⅱ)解:∵A=$\frac{π}{4}$,∴C=$π-\frac{π}{4}-\frac{2π}{3}=\frac{π}{3}-\frac{π}{4}$.…(6分)
∴sinC=sin$({\frac{π}{3}-\frac{π}{4}})$=$sin\frac{π}{3}cos\frac{π}{4}-cos\frac{π}{3}sin\frac{π}{4}$=$\frac{{\sqrt{6}-\sqrt{2}}}{4}$.…(8分)
由正弦定理得,$\frac{c}{sinC}=\frac{b}{sinB}$,…(9分)
∵$b=\sqrt{3}$,B=$\frac{2π}{3}$,
∴$c=\frac{bsinC}{sinB}=\frac{{\sqrt{6}-\sqrt{2}}}{2}$.…(10分)
∴△ABC的面积$S=\frac{1}{2}bcsinA=\frac{1}{2}×\sqrt{3}×\frac{{\sqrt{6}-\sqrt{2}}}{2}×sin$$\frac{π}{4}$=$\frac{{3-\sqrt{3}}}{4}$.…(12分)

点评 本题在△ABC中给出边与角的正弦的等式,要我们求角的大小并且由此求三角形的面积,着重考查了正余弦定理和三角形面积公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.从6名男医生和3名女医生中选出5人组成一个医疗小组,若这个小组中必须男女医生都有,共有120种不同的组建方案(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a∈R,“cos2α=0”是“sinα=cosα”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若sinα=$\frac{\sqrt{10}}{10}$,β=arccos(-$\frac{\sqrt{5}}{5}$),0<α<$\frac{π}{2}$,求证:α+β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数y1=x1lnx1,函数y2=x2-3,则(x1-x22+(y1-y22的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设全集U=R,集合A={x|0<x<2},B={x|x<1},则集合(∁UA)∩B=(  )
A.(-∞,0)B.(-∞,0]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinB+sin(C-A)=$\sqrt{2}$sinC,$\frac{\sqrt{2}}{4}$≤$\frac{sinC}{sinB}$≤$\frac{5\sqrt{2}}{4}$
(Ⅰ)当b=1时,求△ABC面积的最大值;
(Ⅱ)求$\frac{a}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知单调递增的等比数列{an}满足a1+a2+a3=7,且a3是a1,a2+5的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an+1,cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,记数列{cn}的前n项和为Tn.若对任意的n∈N*,不等式Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,则目标函数z=x+y的最小值为1.

查看答案和解析>>

同步练习册答案