分析 (Ⅰ)由已知及正弦定理可得范围$\frac{\sqrt{2}}{4}$≤c≤$\frac{5\sqrt{2}}{4}$,由sin(C-A)+sinB=$\sqrt{2}$sinC,利用两角和与差的正弦函数公式化简可得cosA的值,进而可求sinA,利用三角形面积公式即可解得其最大值.
(Ⅱ)由$\frac{\sqrt{2}}{4}$≤$\frac{sinC}{sinB}$≤$\frac{5\sqrt{2}}{4}$,利用三角形内角和定理,两角和的正弦函数公式解得sinB的范围,利用正弦定理即可得解$\frac{a}{b}$的取值范围.
解答 解:(Ⅰ)∵$\frac{\sqrt{2}}{4}$≤$\frac{sinC}{sinB}$≤$\frac{5\sqrt{2}}{4}$,b=1,
∴由正弦定理可得:$\frac{\sqrt{2}}{4}$≤$\frac{c}{b}$≤$\frac{5\sqrt{2}}{4}$,可得:$\frac{\sqrt{2}}{4}$≤c≤$\frac{5\sqrt{2}}{4}$,
∵sin(C-A)+sinB=$\sqrt{2}$sinC,
⇒sin(C-A)+sin(C+A)=$\sqrt{2}$sinC,
⇒2sinCcosA=$\sqrt{2}$sinC,(sinC≠0),
⇒cosA=$\frac{\sqrt{2}}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{2}}{2}$.
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×\frac{\sqrt{2}}{2}$×c∈[$\frac{1}{8}$,$\frac{5}{8}$].
∴△ABC面积的最大值为$\frac{5}{8}$.
(Ⅱ)∵由(Ⅰ)得sinA=$\frac{\sqrt{2}}{2}$,且$\frac{\sqrt{2}}{4}$≤$\frac{sinC}{sinB}$≤$\frac{5\sqrt{2}}{4}$,
⇒$\frac{sinAcosB+cosAsinB}{sinB}$=$\frac{\frac{\sqrt{2}}{2}(cosB+sinB)}{sinB}$∈[$\frac{\sqrt{2}}{4}$,$\frac{5\sqrt{2}}{4}$],
⇒$\frac{cosB}{sinB}$=±$\sqrt{\frac{1-si{n}^{2}B}{si{n}^{2}B}}$∈[-$\frac{1}{2}$,$\frac{3}{2}$],
⇒sinB∈[$\frac{2\sqrt{13}}{13}$,1].
∴$\frac{a}{b}$=$\frac{sinA}{sinB}$=$\frac{\frac{\sqrt{2}}{2}}{sinB}$∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{26}}{4}$].
点评 本题主要考查了两角和的正弦函数公式,正弦定理,同角三角函数基本关系式的应用,考查了不等式的解法及应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{4}$,+∞) | B. | (-4,+∞) | C. | (-∞,-$\frac{1}{4}$) | D. | (-∞,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,6) | B. | (0,1) | C. | (1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$] | B. | (0,$\frac{1}{2}$) | C. | [$\frac{1}{2}$,+∞) | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com