精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,$\overrightarrow{b}$=(4cosα,-4sinα),且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则θ等于$\frac{π}{3}$.

分析 根据平面向量的数量积运算与夹角公式,即可求出$\overrightarrow{a}$、$\overrightarrow{b}$夹角的大小.

解答 解:∵|$\overrightarrow{a}$|=2,$\overrightarrow{b}$=(4cosα,-4sinα),
∴|$\overrightarrow{b}$|=$\sqrt{{(4cosα)}^{2}{+(-4sinα)}^{2}}$=4,
又$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow{b}$=22-$\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=4;
设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则θ∈[0,π],
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|×|\overrightarrow{b}|}$=$\frac{4}{2×4}$=$\frac{1}{2}$,
∴θ=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题考查了平面向量数量积运算与夹角公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=1,b=2,C=60°,则c=$\sqrt{3}$,△ABC的面积S=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\overrightarrow{a}$、$\overrightarrow{b}$为单位向量,若$|\overrightarrow{a}-4\overrightarrow{b}|=3\sqrt{2}$,则$|\overrightarrow{a}+4\overrightarrow{b}|$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={2,4,6,8},B={x|x2-9x+18≤0},则A∩B=(  )
A.{2,4}B.{4,6}C.{6,8}D.{2,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里其意是:现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走 了 700里.若该匹马按此规律继续行走7天,则它这14天内所走的总路程为(  )
A.$\frac{175}{32}$里B.1050 里C.$\frac{22575}{32}$里D.2100里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{m}$,$\overrightarrow{n}$为两个非零向量,且|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,则|$\overrightarrow{n}$|+|2$\overrightarrow{m}$+$\overrightarrow{n}$|的最大值为(  )
A.4$\sqrt{2}$B.3$\sqrt{3}$C.$\frac{7\sqrt{3}}{2}$D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题

已知五边形由直角梯形与直角△构成,如图1所示,,且,将梯形沿着折起,形成如图2所示的几何体,且使平面平面

(1)在线段上存在点,且,证明:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设p:2x<1,q:x(x+1)<0,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|0<x<3},N={x|x>2},则M∩(∁RN)=(  )
A.(0,2]B.[0,2)C.(2,3)D.[2,3)

查看答案和解析>>

同步练习册答案