精英家教网 > 高中数学 > 题目详情
假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知道y对x呈线性相关关系.附:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

试求:
(1)线性回归方程
y
=a+bx的回归系数.
(2)估计使用年限为10年时,维修费用是多少?
考点:回归分析
专题:应用题,概率与统计
分析:(1)根据所给的数据,做出变量x,y的平均数,根据最小二乘法做出线性回归方程的系数b,在根据样本中心点一定在线性回归方程上,求出a的值.
(2)根据第一问做出的a,b的值,写出线性回归方程,当自变量为10时,代入线性回归方程,求出维修费用,这是一个预报值.
解答: 解:(1)由题意知
.
x
=
1
5
(2+3+4+5+6)=4,
.
y
=
1
5
(2.2+3.8+5.5+6.5+7.0)=5
b=
2×2.2+3×3.8+4×5.5+5×6.5+6×7-5×4×5
4+9+16+25+36-5×16
=1.23,
a=5-4×1.23=0.08
(2)根据第一问知线性回归方程是
y
=1.23x+0.08
当自变量x=10时,预报维修费用是y=1.23×10+0.08=12.38.
点评:本题考查线性回归方程的求解和应用,是一个基础题,解题的关键是正确应用最小二乘法来求线性回归方程的系数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若曲线y=
ex-1,x≤1
1
1-x
,x>1
,与直线y=kx-1有两个不同的交点,则实数k的取值范围是(  )
A、(3-2
2
,3+2
2
B、(0,3-2
2
C、(-∞,0)∪(0,3-2
2
D、(-∞,3-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)若椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(文)(Ⅱ)在(Ⅰ)的条件下,设过点F且斜率不为0的直线交椭圆C于A、B两点,试问X轴上是否存在定点P,使PF平分∠APB?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,E是PC的三等分点,F是PB的中点,求证:AF∥面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

A,B是焦点为F的抛物线y2=4x上的两动点,线段AB的中点M在直线x=t(t>0)上.
(1)当t=1时,求|FA|+|FB|的值.
(2)当M(2,2)时,求直线AB的方程.
(3)记|AB|的最大值为g(t),求g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{Cn}满足Cn=n•2n-2+2n,求数列{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:

“交通指数”是反映道路网畅通或拥堵的概念性指数值.交通指数的取值范围为0至10,分为5个等级:其中[0,2)为畅通,[2,4)为基本畅通,[4,6)为轻度拥堵,[6,8)为中度拥堵,[8,10]为严重拥堵.晚高峰时段,某市交通指挥中心选取了市区60个交通路段,依据其交通指数数据绘制的频数分布表及频率分布直方图如图所示:
交通指数   频数  频率
[0,2)    m1n1
[2,4)    m2n2
[4,6)    150.25
[6,8)    180.3
[8,10]    120.2
(Ⅰ)求频率分布表中所标字母的值,并补充完成频率分布直方图;
(Ⅱ)用分层抽样的方法从交通指数在[0,2)和[2,4)的路段中抽取一个容量为5的样本,将该样本看成一个总体,从中随机抽出2个路段,求至少有一个路段为畅通的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
lim
n→+∞
(1+
1
n
n

查看答案和解析>>

同步练习册答案