精英家教网 > 高中数学 > 题目详情
“交通指数”是反映道路网畅通或拥堵的概念性指数值.交通指数的取值范围为0至10,分为5个等级:其中[0,2)为畅通,[2,4)为基本畅通,[4,6)为轻度拥堵,[6,8)为中度拥堵,[8,10]为严重拥堵.晚高峰时段,某市交通指挥中心选取了市区60个交通路段,依据其交通指数数据绘制的频数分布表及频率分布直方图如图所示:
交通指数   频数  频率
[0,2)    m1n1
[2,4)    m2n2
[4,6)    150.25
[6,8)    180.3
[8,10]    120.2
(Ⅰ)求频率分布表中所标字母的值,并补充完成频率分布直方图;
(Ⅱ)用分层抽样的方法从交通指数在[0,2)和[2,4)的路段中抽取一个容量为5的样本,将该样本看成一个总体,从中随机抽出2个路段,求至少有一个路段为畅通的概率.
考点:古典概型及其概率计算公式,频率分布直方图
专题:概率与统计
分析:(Ⅰ) 根据频率分布直方图,求出值即可.
(Ⅱ)列举出所有的基本事件,然后找到满足条件的基本事件,根据古典概率公式计算即可.
解答: 解:(I)由频率分布直方图,得交通指数在[2,4)的频率为
1-(0.05+0.1+0.125+0.15)×2=0.15.
所以,n1=0.05×2=0.1,m1=0.1×60=6,
n2=0.15,m2=0.15×60=9,
频率分布直方图为:

(II)依题意知,取出的5个路段中,交通指数在[0,2)内的有2个,设为啊,b,
交通指数在[2,4)内的有3个,设为想,x,y,z,
则交通指数在[0,4)的基本事件空间为
Ω={ab,ax,ay,az,bx,by,bz,xy,xz,yz},基本事件总数为10,
事件A=“至少有一个路段为畅通”,
则A={ab,ax,ay,az,bx,by,bz},基本事件总数为7.
P(A)=
7
10

所以至少有一个路段为畅通的概率为
7
10
点评:本题主要考查频率分布直方图和概率的计算公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图在三棱柱ABC-A1B1C1中,平面ABB1A1⊥平面AA1C1C,∠BAA1=90°,∠CAA1=120°,AB=AC=AA1=2,D是棱CC1的中心点.
(Ⅰ)求证:AD⊥A1B;
(Ⅱ)求二面角D-A1B-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知道y对x呈线性相关关系.附:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

试求:
(1)线性回归方程
y
=a+bx的回归系数.
(2)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

观察(1)sin230°+cos260°+sin30°cos60°=
3
4

    (2)sin210°+cos240°+sin10°cos40°=
3
4

    (3)sin26°+cos236°+sin6°cos36°=
3
4

请你根据上述规律,提出一个猜想,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在(-∞,0]上单调递减,在[2,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过曲线C上任意一点P作直线x=-2p(p>0)的垂线,垂足为M,且OP⊥OM.
(1)求曲线C的方程;
(2)设A、B是曲线C上两个不同点,直线OA和OB的倾斜角分别为α和β,当α,β变化且α+β为定值θ(0<θ<π)时,证明直线AB恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A-C)+cosB=
3
2

(1)B=60°,判断三角形形状;       
(2)b2=ac,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是圆柱OO1底面圆O的直径,底面半径R=1,圆柱的表面积为8π;点C在底面圆O上,且∠AOC=120°.
(1)求三棱锥A-A1CB的体积;
(2)求异面直线A1B与OC所成的角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠BAD=90°,AB=AD=1,PD=
3
,CD=2.
(Ⅰ)求证:BC⊥平面PBD;
(Ⅱ)点E是线段PC上的一个动点,二面角E-BA-D的大小是否可以为30°?若可以,求出线段PE的长.

查看答案和解析>>

同步练习册答案