精英家教网 > 高中数学 > 题目详情
求值:
lim
n→+∞
(1+
1
n
n
考点:极限及其运算
专题:导数的概念及应用
分析:利用重要重要极:
lim
n→+∞
(1+
1
n
n=e,可得结论.
解答: 解:
lim
n→+∞
(1+
1
n
n =e.
点评:本题主要考查了数列极限的求解,主要是利用重要重要极:
lim
n→+∞
(1+
1
n
n=e.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57.0
若由资料知道y对x呈线性相关关系.附:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

试求:
(1)线性回归方程
y
=a+bx的回归系数.
(2)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A-C)+cosB=
3
2

(1)B=60°,判断三角形形状;       
(2)b2=ac,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是圆柱OO1底面圆O的直径,底面半径R=1,圆柱的表面积为8π;点C在底面圆O上,且∠AOC=120°.
(1)求三棱锥A-A1CB的体积;
(2)求异面直线A1B与OC所成的角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=
2
,AA1=2,E是侧棱BB1的中点.
(1)求四面体A-A1ED的体积;
(2)求异面直线AE与B1D所成角的大小.(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.
(1)求证:AC⊥BB1
(2)若AB=AC=A1B=2,在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinx•cosx+sin2x.
(1)求函数f(x)的最小正周期及最小值;
(2)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,a=2,b+c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠BAD=90°,AB=AD=1,PD=
3
,CD=2.
(Ⅰ)求证:BC⊥平面PBD;
(Ⅱ)点E是线段PC上的一个动点,二面角E-BA-D的大小是否可以为30°?若可以,求出线段PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,AD∥BC,∠ABC=∠APB=90°,点M是线段AB上的一点,且PM⊥CD,AB=BC=2PB=2AD=4BM.
(1)证明:面PAB⊥面ABCD;
(2)求平面PAB与平面PCD的二面角的正弦值.

查看答案和解析>>

同步练习册答案