精英家教网 > 高中数学 > 题目详情
20.已知等差数列{an}的前n项和为Sn,若$2\overrightarrow{OC}={a_4}\overrightarrow{OA}+{a_8}\overrightarrow{OB}$,且A,B,C三点不共线(该直线不过O点),则S11=11.

分析 由已知得到a4+a8=2,由此能求出S11的值.

解答 解:∵等差数列{an}的前n项和为Sn,$2\overrightarrow{OC}={a_4}\overrightarrow{OA}+{a_8}\overrightarrow{OB}$,且A,B,C三点不共线(该直线不过O点),
∴a4+a8=2,
∴S11=$\frac{11}{2}$(a1+a11)=$\frac{11}{2}({a}_{4}+{a}_{8})$=$\frac{11}{2}×2$=11.
故答案为:11.

点评 本题考查数列的前11项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源:2017届河南新乡一中高三9月月考数学(文)试卷(解析版) 题型:选择题

中,角的对边分别是边上的高,,若,则边的距离为( )

A.2 B.3 C.1 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x,y满足$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+1≥0}\\{x+2y-2≥0}\end{array}\right.$,若z=3x-2y的最大值为a,最小值为b,则ab=(  )
A.-12B.-9C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在各项均为正数的等比数列{an}中,a2a10=9,则a5+a7(  )
A.有最小值6B.有最大值6C.有最大值9D.有最小值3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在(-∞,+∞)上的偶函数,且在[0,+∞)上是增函数,若实数a满足:$f({log_3}a)+f({log_3}\frac{1}{a})≤2f(1)$,则a的取值范围是$\frac{1}{3}$≤a≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若直线$\sqrt{3}$x-y-1=0与x-ay=0的夹角是$\frac{π}{6}$,则实数a的值为$\sqrt{3}$或0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于实数x,记[x]表示不超过x的最大整数,如[3.14]=3,[-0.25]=-1.若存在实数t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同时成立,则正整数n的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图所示,正方体的棱长为2,C、D分别是两条棱的中点,A、B、M是顶点,那么M到截面ABCD的距离是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=sinxsin(x+$\frac{π}{3}$)+sin2x,x∈(-$\frac{π}{2}$,$\frac{π}{4}$)的值域为[$\frac{3-2\sqrt{3}}{4}$,$\frac{3+2\sqrt{3}}{4}$].

查看答案和解析>>

同步练习册答案