精英家教网 > 高中数学 > 题目详情
求y=x2-2x-3在[-2,2]上的最大值和最小值.
考点:二次函数在闭区间上的最值
专题:函数的性质及应用
分析:由条件利用二次函数的性质求得y=x2-2x-3在[-2,2]上的最大值和最小值.
解答: 解:y=x2-2x-3=(x-1)2-4 在[-2,2]上,当x=1时,函数取得最小值为-4,
当x=-2时,函数取得最大值为5.
点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={1,2,3,…,10},求集合A的所有非空子集元素和的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三个内角A、B、C所对的边分别为a、b、c,且2bcosC=2a-c.
(1)求角B;
(2)若△ABC的面积S=
3
3
4
,a+c=4,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次不等式(m-2)x2+2(m-2)x+4>0的解集为∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x).
(1)当x<0时,求f(x);   
(2)画出函数f(x)在R上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用分析法证明:
a
+
a+7
a+3
+
a+4
(a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα<0,tanα>0,试判断tan
α
2
,sin
α
2
,cos
α
2
的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示几何体是正方体ABCD-A1B1C1D1截去三棱锥B1-A1BC1后所得,点M为A1C1的中点.
(1)求证:平面A1C1D⊥平面MBD;
(2)求平面A1BC1与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

焦点在x轴的椭圆C1
x2
a2
+
y2
4
=1(3≤a≤4),过C1右顶点A2(a,0)的直线l:y=k(x-a)(k>0)与曲线C2:y=x2-
ak
4
相切,交C1于A2、E二点.
(1)若C1的离心率为
5
3
,求C1的方程.
(2)求|A2E|取得最小值时C2的方程.

查看答案和解析>>

同步练习册答案