精英家教网 > 高中数学 > 题目详情
18.已知直线l:y=k(x-2)与抛物线C:y2=8x交于A,B两点,点M(-2,4)满足MA⊥MB,则|AB|=(  )
A.6B.8C.10D.16

分析 先根据抛物线方程求得焦点坐标,直线y=k(x-2)过抛物线的焦点,将直线方程代入抛物线方程消去y,根据韦定理表示出x1+x2及x1x2进而求得y1y2和y1+y2,由MA⊥MB,即可求得k的值,由弦长公式即可求得|AB|.

解答 解:由抛物线C:y2=8x可得焦点F(2,0),直线y=k(x-2)过抛物线的焦点,
代入抛物线方程,得到k2x2-(4k2+8)x+4k2=0,△>0.
设A(x1,y1),B(x2,y2),
∴x1+x2=$\frac{{4k}^{2}+8}{{k}^{2}}$,x1x2=4;∴y1+y2=$\frac{8}{k}$,y1y2=-16.
由MA⊥MB,可得$\overrightarrow{MA}•\overrightarrow{MB}$═(x1+2,y1-4)•(x2+2,y2-4)
=x1x2+2(x1+x2)+4+y1y2-4(y1+y2)+16=0,
整理得:k2-2k+1=0,解得k=1,
∴x1+x2=12,x1x2=4.
∴|AB|=$\sqrt{{1+k}^{2}}$•$\sqrt{{{(x}_{1}{+x}_{2})}^{2}-{4x}_{1}{•x}_{2}}$=$\sqrt{2}$•$\sqrt{{12}^{2}-4×4}$=16,
故选:D.

点评 本题考查了直线与抛物线的位置关系,考查抛物线的标准方程及其性质、向量的数量积公式、弦长公式等基础知识与基本技能方法,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)满足:f(x)=f(x+2),且当x∈[0,2]时,f(x)=(x-1)2,则f($\frac{7}{2}$)等于(  )
A.0B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,高二(1)班有40名同学,一次数学考试的成绩X~N(120,100),理论上说在130分~140分之间的人数约为(  )
A.8B.5C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一个几何体的三视图如图所示,则该几何体的表面积是(  )
A.3B.6C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.我市在对高三学生的综合素质评价中,将其测评结果分为“A、B、C”三个等级,其中A表示“优秀”,B表示“良好”,C表示“合格”.
(1)某校高三年级有男生1000人,女生700人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高三学生中抽取了85名学生的综合素质评价结果,其各个等级的频数统计如表:
等级优秀良好合格
男生(人)16x8
女生(人)1813y
根据表中统计的数据填写下面2×2列联表,并判断是否有95%的把握认为“综合素质评价测评结果为优秀与性别有关”?
男生女生总计
优秀
非优秀
总计
(2)以(1)中抽取的85名学生的综合素质评价等级为“合格”的学生中按分层抽样随机抽取6人.再从这6人中任选2人去参加“提高班”培训,求所选6人中恰有2人为男生的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集为R,集合M={-1,0,1,5},N={x|x2-x-2<0},则M∩N=(  )
A.{0,1,5}B.{-1,0,1}C.{0,1}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={-1,0,1},B={0,1,2},那么A∩B等于(  )
A.{0}B.{1}C.{0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当x,y满足条件$\left\{\begin{array}{l}y≥1\\ x-y≤0\\ x+2y-6≤0\end{array}\right.$时,目标函数z=x+y的最小值是(  )
A.2B.2.5C.3.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设等差数列{an}满足$\frac{si{n}^{2}{a}_{2}-co{s}^{2}{a}_{2}+co{s}^{2}{a}_{2}co{s}^{2}{a}_{7}-si{n}^{2}{a}_{2}si{n}^{2}{a}_{7}}{sin({a}_{1}+{a}_{8})}$=1,公差d∈(-1,0),若当且仅当n=11时,数列{an}的前n项和Sn取得最大值,则首项a1的取值范围是(  )
A.($\frac{9π}{10}$,π)B.[π,$\frac{11π}{10}$]C.[$\frac{9π}{10}$,π]D.(π,$\frac{11π}{10}$)

查看答案和解析>>

同步练习册答案