精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2-2(a+2)lnx+ax
,a∈R
(1)当a=-1时,求函数f(x)的最小值;
(2)是否存在实数a,对任意x1,x2∈(0,+∞),且x1≠x2,都有
f(x2)-f(x1)
x2-x1
>a
恒成立,若存在,求出a的取值范围;若不存在,说明理由.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)求导数,确定函数的单调性,即可求函数f(x)的最小值;
(2)(
f(x2)-f(x1)
x2-x1
>a
恒成立,即f′(x)=x-
2(a+2)
x
+a>a恒成立,由此可求a的取值范围.
解答: 解:(1)当a=-1时,f(x)=
1
2
x2
-2lnx-x,则f′(x)=x-
2
x
-1=
(x-2)(x+1)
x

∴函数在(0,2)上单调递减,在(2,+∞)上单调递增,
∴x=2时,函数f(x)的最小值为-2ln2;
(2)∵
f(x2)-f(x1)
x2-x1
>a
恒成立,
∴f′(x)=x-
2(a+2)
x
+a>a恒成立,
∴2(a+2)<x2
∴a+2≤0,
∴a≤-2.
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在函数f(x)=ax+
2
x
在x=1处有极值,则a的值为(  )
A、-1B、-2C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数在[0,+∞)内为增函数的是(  )
A、y=x2-x
B、y=-
1
x
C、y=lnx
D、y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+xlnx,g(x)=x3-x2-3.
(1)讨论函数h(x)=
f(x)
x
的单调性;
(2)如果对任意的s,t∈[
1
2
,2],都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在[-3,2]区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1,过点A(2,0)作弦PA⊥QA,P、Q均在椭圆上,试问直线PQ是否经过一定点?若过定点,求出该定点坐标;若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C的对边,且a2=b2+c2+bc.
(1)求A的大小;
(2)求sinB+sinC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-12x,x∈[-3,3].求函数的极值和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+
2
=0与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,求证:直线AB过定点;
(Ⅲ)过点P(0,2)的直线l与椭圆交于不同的两点D、E,当△ODE面积最大时,求|DE|.

查看答案和解析>>

同步练习册答案