精英家教网 > 高中数学 > 题目详情
如图,在平行四边形ABCD中,|AB|=3,|BC|=2,
e1
=
AB
|
AB
|
e2
=
AD
|
AD
|
AB
AD
的夹角为
π
3

(1)若
AC
=x
e1
+y
e2
,求x、y的值;
(2)求
AC
BD
的值;
(3)求
AC
BD
的夹角的余弦值.
考点:平面向量的综合题
专题:平面向量及应用
分析:(1)由平行四边形法则得
AC
=
AB
+
AD
,而
e1
e2
分别是
AB
AC
方向上的单位向量
,再结合数乘运算、平面向量基本定理中的“唯一性”不难求出x、y;
(2)由题意可以
AB
AC
为基底,将
AC
BD
用基底表示,再利用内积的定义及运算可求得
AC
BD
的值;
(3)直接套用夹角公式cos<
a
b
>=
a
b
|
a
||
b
|
计算.
解答: 解:(1)∵|AB|=3,|BC|=2,
e1
=
AB
|
AB
|
e2
=
AD
|
AD
|

AC
=
AB
+
BC
=3
e1
+2
e2
=x
e1
+y
e2

∴x=3,y=2.

(2)由向量的运算法则知,
BD
=
AD
-
AB
=2
e2
-3
e1

AC
BD
=(2
e
2
+3
e1
)•(2
e
2
-3
e1
)=4
e
 
2
2
-9
e1
2
=-5

(3)∵
AB
AD
的夹角为
π
3
,∴
e1
e2
的夹角为
π
3

|
e1
|=|
e2
|=1

|
AC
|=|
AD
+
AB
|
=|2
e2
+3
e1
|
=
4
e2
2
+9
e1
2
+12
e2
e1
=
4+9+12×cos
π
3
=
19

|
BD
|=|
AD
-
AB
|
=|2
e2
-3
e1
|
=
4
e2
2
+9
e1
2
-12
e2
e1
=
4+9-12×cos
π
3
=
7

AC
BD
的夹角为θ,可得cosθ=
AC
BD
|
AC
|•|
BD
|
=
(2
e2
+3
e1
)•(2
e2
-3
e1
)
19
×
7
=
4
e2
2
-9
e1
2
133
=-
5
133
133

AC
BD
的夹角的余弦值为-
5
133
133
点评:利用平面向量基本定理解题,一般先以不共线的、模长及夹角都知道的两个向量作为基底,然后利用基底把已知的、所求的向量表示出来,再进行有关的运算化简和证明;数量积的考查是重点也是热点,一般是距离和角的计算居多,要以数量积的定义为出发点进行思考,要注意结合图形寻找解题思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆a2x2-
a
2
y2=1的一个焦点是(-2,0),则a等于(  )
A、
1-
3
4
B、
1-
5
4
C、
-1±
3
4
D、
-1±
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,ABCD是边长为2的正方形,PD⊥平面ABCD,AD=PD=2EA,F,G,H分别为PB,EB,PC的中点.
(Ⅰ)求证:平面FGH∥平面PED
(Ⅱ)求平面FGH与平面PBC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△AOB中,∠AOB=
π
2
,且向量
OA
=(-1,3),
OB
=(cosα,-sinα).
(1)求
sin(π-2α)+cos2α
2cos2α+sin2α+2

(2)若α是钝角,α-β是锐角,且sin(α-β)=
3
5
,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
ex

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若方程f(x)=
m
x
有解,求实数m的取值范围;
(Ⅲ)若存在实数x1≠x2,使x1•f(x1)=x2•f(x2)成立,求证:x1+x2>6.

查看答案和解析>>

科目:高中数学 来源: 题型:

是否存在常数a、b,使等式:12+22+32+…+n2=an(n+b)(2n+1)对一切正整数n成立?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△AOB中,∠OAB=
π
6
,斜边AB=4.Rt△AOB以直线AO为轴旋转得到Rt△AOC,且二面角B-AO-C是直二面角.动点D在斜边AB上.
(1)求证:平面COD⊥平面AOB;
(2)当AD=
1
2
DB
时,求异面直线AO与CD所成角的正切值;
(3)求CD与平面AOB所成最大角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x-8,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+bx2+cx+d在区间(-∞,0]和[6,8]上单调递增,在[0,2]上单调递减,其图象与x轴交于A,B,C三点,其中点B的坐标为(2,0).
(Ⅰ)求c的值;
(Ⅱ)求b的取值范围;
(Ⅲ)求|AC|的取值范围.

查看答案和解析>>

同步练习册答案