精英家教网 > 高中数学 > 题目详情
5.曲线y=x2-2x与直线x=-1,x=l以及x轴所围图形的面积为2..

分析 先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.

解答 解:根据题意画出图形,

曲线y=x2-2x,与直线x=-1,x=1,以及x轴所围成的曲边梯形的面积为
${∫}_{-1}^{0}({x}^{2}-2x)dx+{∫}_{0}^{1}(2x-{x}^{2})dx$=($\frac{1}{3}{x}^{3}-{x}^{2}$)|${\;}_{-1}^{0}$+(x2-$\frac{1}{3}{x}^{3}$)|${\;}_{0}^{1}$=$\frac{4}{3}+\frac{2}{3}$=2;
故答案为:2

点评 本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设x为正数,当x取什么值时,函数y=$\frac{{x}^{2}+4}{x}$有最小值?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\left\{\begin{array}{l}{2{x}^{3}+3{x}^{2}+1,x≤0}\\{-{x}^{2}+2ax-{a}^{2}+2a,x>0}\end{array}\right.$在区间[-2,2]上的最大值为2,则实数a的取值范围是(-∞,1]∪[3+$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC的外接圆半径为1,圆心为O,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow 0$,则$\overrightarrow{OA}•\overrightarrow{BC}$的值为(  )
A.-$\frac{3}{5}$B.$\frac{1}{5}$C.-$\frac{6}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.
(1)请写出程序框图所表示的函数表达式;
(2)求输出的y(y<5)的概率;
(3)求输出的y(6<y≤8)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:?x∈R,2x2+1>0,则(  )
A.¬p:?x∈R,2x2+1≤0B.¬p:?x∈R,2x2+1≤0C.¬p:?x∈R,2x2+1<0D.¬p:?x∈R,2x2+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)的导函数为f′(x),若对任意x∈R,都有f′(x)>f(x)成立,则(  )
A.f(ln2015)<2015f(0)
B.f(ln2015)=2015f(0)
C.f(ln2015)>2015f(0)
D.f(ln2015)与2015f(0)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将函数y=$\frac{\sqrt{2}}{2}$(sinx+cosx)的图象上各点的横坐标伸长到原来的2倍,再向左平移$\frac{π}{2}$个单位,所得函数图象的解析式是(  )
A.y=cos$\frac{x}{2}$B.y=sin($\frac{x}{2}+\frac{3π}{4}$)C.y=-sin(2x+$\frac{π}{4}$)D.y=sin(2x+$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=(x-k)ex在x=0处取得极值,则实数k的值是1.

查看答案和解析>>

同步练习册答案