【题目】已知函数
.
(1)求证:
;
(2)用
表示
中的最大值,记
,讨论函数
零点的个数.
【答案】(1)见解析,(2)见解析
【解析】
(1) 设
求出函数的最小值即可;
(2) 对x和a的范围进行讨论,得出f(x),g(x)在(0,+∞)上的单调性,利用单调性及最值判断f(x),g(x)的零点个数,从而得出h(x)的零点个数.
(1)证明:设
,定义域为
,
则
.
当
时,
;当
时,
,
故
在
内是减函数,在
内是增函数,
所以
是
的极小值点,也是
的最小值点,
所以
,所以![]()
(2)解:函数
的定义域为
,
,
当
时,
;当
时,
,
所以
在
内是减函数,在
内是增函数,
所以
是
的极小值点,也是
的最小值点,
即![]()
若
,则
,
当
时,
;当
时,
;
当
时,
.
所以
,于是
只有一个零点
.
当
,则当
时,
,此时
,
当
时,
,
,此时![]()
所以
没有零点.
当
,则当
时,根据(1)可知,![]()
而
,所以![]()
又因为
,所以
在
上有一个零点
,
从而一定存在
,使得
,
即
,所以
.
当
时,
,
所以
,从而
,
于是
有两个零点
和1.
故当
时,
有两个零点.
综上,当
时,
有一个零点,当
时,
没有零点,当
时,
有两个零点.
科目:高中数学 来源: 题型:
【题目】过点
的动直线l与y轴交于点
,过点T且垂直于l的直线
与直线
相交于点M.
(1)求M的轨迹方程;
(2)设M位于第一象限,以AM为直径的圆
与y轴相交于点N,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形
中,
,
,
为
的中点,点
,
分别在线段
,
上运动(其中
不与
,
重合,
不与
,
重合),且
,沿
将
折起,得到三棱锥
,则三棱锥
体积的最大值为______;当三棱锥
体积最大时,其外接球的半径
______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用 水量 |
|
|
|
|
|
|
|
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 |
|
|
|
|
|
|
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
![]()
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式。孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数.在不超过30的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市对一项惠民市政工程满意程度(分值:
分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):
![]()
现用分层抽样的方法从所有参与网上投票的市民中随机抽取
位市民召开座谈会,其中满意程度在
的有5人.
(1)求
的值,并填写下表(2000位参与投票分数和人数分布统计);
满意程度(分数) |
|
|
|
|
|
人数 |
(2)求市民投票满意程度的平均分(各分数段取中点值);
(3)若满意程度在
的5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断正确的是( )
![]()
A.1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了![]()
B.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势
C.2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例
D.2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com