相关习题
 0  226171  226179  226185  226189  226195  226197  226201  226207  226209  226215  226221  226225  226227  226231  226237  226239  226245  226249  226251  226255  226257  226261  226263  226265  226266  226267  226269  226270  226271  226273  226275  226279  226281  226285  226287  226291  226297  226299  226305  226309  226311  226315  226321  226327  226329  226335  226339  226341  226347  226351  226357  226365  266669 

科目: 来源: 题型:解答题

10.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率是$\frac{\sqrt{2}}{2}$,直线y=$\frac{1}{2}$被椭圆E截得的线段长为$\sqrt{6}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若椭圆E两个不同的点A,B关于直线y=mx+$\frac{1}{2}$对称,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,|A1B1|=$\sqrt{7}$,F1是椭圆C的左焦点,A1是椭圆C的左顶点,B1是椭圆C的上顶点,且$\overrightarrow{{A}_{1}{F}_{1}}$=$\overrightarrow{{F}_{1}O}$,点P(n,0)(n≠0)是长轴上的任一定点,过P点的任一直线l交椭圆C于A,B两点.
(1)求椭圆C的方程;
(2)是否存在定点Q(x0,0),使得$\overrightarrow{QA}$•$\overrightarrow{QB}$为定值,若存在,试求出定点Q的坐标,并求出此定值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知F1•F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,其中F2与抛物线y2=12x的焦点重合,M是两曲线的一个交点,且有cos∠MF1F2•cos∠MF2F1=$\frac{7}{23}$,求椭圆方程.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,设P是上半椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(y≥0)上任意一点,F为右焦点,PF的最小值是$\sqrt{2}$-1,离心率是$\frac{\sqrt{2}}{2}$,上半椭圆C与x轴交于点A1,A2
(1)求出a2,b2的值;
(2)设P是上半椭圆C上位于第一象限内的任意一点,过A2作A2R⊥A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知A(-2,0),B(2,0),且△ABM的周长等于2$\sqrt{6}$+4,求动点M的轨迹G的方程:

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左顶点为A(-3,0),圆心在原点的圆O与椭圆的内接三角形△AEF的三条边都相切.
(1)求椭圆方程;
(2)求圆O方程;
(3)B为椭圆的上顶点,过B作圆O的两条切线,分别交椭圆于M,N两点,试判断并证明直线MN与圆O的位置关系.

查看答案和解析>>

科目: 来源: 题型:选择题

4.设经过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的任意两点的连线(该连线不与x轴垂直)的垂直平分线与x轴交点的横坐标为x0,则x0的取值范围是(  )
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-1,1]D.(-1,1)

查看答案和解析>>

科目: 来源: 题型:解答题

3.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F在x轴上,D为短轴上一个端点,且△DOF的内切圆的半径为$\frac{\sqrt{3}-1}{2}$,离心率e是方程2x2-5x+2=0的一个根.
(1)求椭圆C的方程;
(2)设过原点的直线与椭圆C交于A,B两点,过椭圆C的右焦点作直线l∥AB交椭圆C于M,N两点,是否存在常数λ,使得|AB|2=λ|MN|?若存在,请求出λ;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知F1,F2是椭圆$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1的两个焦点,过点F2的直线交椭圆于M,N两点,在△F1MN中,若有两边之和是14,则第三边的长度为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知椭圆$\frac{{x}^{2}}{4}$+y2=1,过它的左焦点引倾斜角为$\frac{π}{3}$的弦PQ,则PQ中点坐标为(-$\frac{12\sqrt{3}}{13}$,$\frac{3}{13}$).

查看答案和解析>>

同步练习册答案