相关习题
 0  240409  240417  240423  240427  240433  240435  240439  240445  240447  240453  240459  240463  240465  240469  240475  240477  240483  240487  240489  240493  240495  240499  240501  240503  240504  240505  240507  240508  240509  240511  240513  240517  240519  240523  240525  240529  240535  240537  240543  240547  240549  240553  240559  240565  240567  240573  240577  240579  240585  240589  240595  240603  266669 

科目: 来源: 题型:选择题

9.一次数学考试后,某老师从自己所带的两个班级中各抽取6人,记录他们的考试成绩,得到如图所示的茎叶图.已知甲班6名同学成绩的平均数为82,乙班6名同学成绩的中位数为77,则x-y=(  )
A.3B.-3C.4D.-4

查看答案和解析>>

科目: 来源: 题型:选择题

8.若函数y=ksin(kx+φ)($k>0,|φ|<\frac{π}{2}$)与函数y=kx-k2+6的部分图象如图所示,则函数f(x)=sin(kx-φ)+cos(kx-φ)图象的一条对称轴的方程可以为(  )
A.$x=-\frac{π}{24}$B.$x=\frac{13π}{24}$C.$x=\frac{7π}{24}$D.$x=-\frac{13π}{24}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知A(4,1,3)、B(2,-5,1),C为线段AB上的一点,且满足$\overrightarrow{AB}$=2$\overrightarrow{AC}$,则点C的坐标为(3,-2,2).

查看答案和解析>>

科目: 来源: 题型:填空题

6.某沿海四个城市A,B,C,D的位置如图所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,AD=70$\sqrt{6}$nmile,D位于A的北偏东75°方向.现在有一艘轮船从A出发向直线航行,一段时间到达D后,轮船收到指令改向城市C直线航行,收到指令时城市C对于轮船的方位角是南偏西θ度,则sinθ=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为(  )
A.3600B.1080C.1440D.2520

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知复数$z=\frac{1+ai}{{3-{i^{2017}}}}$是纯虚数(其中i为虚数单位,a∈R),则z=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知集合A={x|x2+x-6<0},集合B={x|2x-1≥1},则A∩B=(  )
A.[-3,2)B.(-3,1]C.[1,2)D.(1,2)

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数f(x)的定义域为R,当x>0时,f(x)<2,对任意的x,y∈R,f(x)+f(y)=f(x+y)+2成立,若数列{an}满足a1=f(0),且f(an+1)=f($\frac{{a}_{n}}{{a}_{n}+3}$),n∈N*,则a2017的值为(  )
A.2B.$\frac{6}{2×{3}^{2016}-1}$C.$\frac{2}{2×{3}^{2016}-1}$D.$\frac{2}{2×{3}^{2015}-1}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现,任何一个三次函数都有“拐点”和对称中心,且“拐点”就是对称中心.
(Ⅰ)求函数f(x)=x3-3x2+3x的对称中心.
(Ⅱ)对于(Ⅰ)中的函数f(x),计算f(-98)+f(-97)+…+f(-1)+f(0)+f(1)+…+f(99)+f(100).

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=lnx,函数g(x)=$\frac{1}{x}$.
(Ⅰ)证明:函数F(x)=f(x)-g(x)在(0,+∞)上为增函数.
(Ⅱ)用反证法证明:f(x)=2的解是唯一的.

查看答案和解析>>

同步练习册答案