相关习题
 0  246816  246824  246830  246834  246840  246842  246846  246852  246854  246860  246866  246870  246872  246876  246882  246884  246890  246894  246896  246900  246902  246906  246908  246910  246911  246912  246914  246915  246916  246918  246920  246924  246926  246930  246932  246936  246942  246944  246950  246954  246956  246960  246966  246972  246974  246980  246984  246986  246992  246996  247002  247010  266669 

科目: 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点.
(1)求证:直线AF∥平面PEC;
(2)求证:AC⊥平面PBD;
(3)求PE与平面PDB所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

12.设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[-2,0]时,f(x)=($\frac{\sqrt{2}}{2}$)x-1,若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0(a>0),有4个不同的根,则a的范围是(8,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

11.设矩阵M=$(\begin{array}{l}{1}&{a}\\{b}&{1}\end{array})$.
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C′:x2-2y2=1,求a+b的值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.如图,A是两条平行直线之间的一定点,且点A到两条平行直线的距离分别为AM=1,AN=$\sqrt{3}$.设△ABC,AC⊥AB,且顶点B、C分别在两条平行直线上运动,则$\frac{1}{AB}$+$\frac{\sqrt{3}}{AC}$的最大值为$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=ex-ax2-2x-1(x∈R).
(1)当a=0时,求f(x)的单调区间;
(2)求证:对任意实数a<0,有f(x)>$\frac{{{a^2}-a+1}}{a}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在多面体ABCDEF中,底面ABCD是以AD,BC为腰的等腰梯形,且DC=$\frac{1}{2}AB,∠DAB={60°}$,EF∥AC,EF=$\frac{1}{2}$AC,M为AB的中点.
(I)求证:FM∥平面BCE;
(Ⅱ)若EC⊥平面ABCD,求证:BC⊥AF.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知数列{an}满足a1=1,an+1-2an=3n,则an=3n-2n

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知D是△ABC所在平面内一点,$\overrightarrow{AD}$=$\frac{7}{13}$$\overrightarrow{AB}$+$\frac{6}{13}$$\overrightarrow{AC}$,则(  )
A.$\overrightarrow{BD}$=$\frac{7}{13}$$\overrightarrow{BC}$B.$\overrightarrow{BD}$=$\frac{6}{13}$$\overrightarrow{BC}$C.$\overrightarrow{BD}$=$\frac{13}{7}$$\overrightarrow{BC}$D.$\overrightarrow{BD}$=$\frac{13}{6}$$\overrightarrow{BC}$

查看答案和解析>>

科目: 来源: 题型:填空题

5.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组既要有教师,又要有学生,不同的安排方案共有28种.

查看答案和解析>>

科目: 来源: 题型:选择题

4.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”.已知f(x)=$\frac{1}{12}$x4-$\frac{1}{6}$mx3-$\frac{3}{2}$x2,若对任意的实数m满足|m|≤2时,函数f(x)在区间(a,b)上为“凸函数”,则b-a的最大值为(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案