精英家教网 > 高中数学 > 题目详情
12.设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[-2,0]时,f(x)=($\frac{\sqrt{2}}{2}$)x-1,若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0(a>0),有4个不同的根,则a的范围是(8,+∞).

分析 由已知中可以得到函数f(x)是一个周期函数,且周期为4,将方程f(x)-loga(x+2)=0恰有4个不同的实数解,转化为函数f(x)的与函数y=-loga(x+2)的图象恰有4个不同的交点,数形结合即可得到实数a的取值范围.

解答 解:∵对于任意的x∈R,都有f(x-2)=f(2+x),
∴f(x+4)=f[2+(x+2)]=f[(x+2)-2]=f(x),
∴函数f(x)是一个周期函数,且T=4.
又∵当x∈[-2,0]时,f(x)=($\frac{\sqrt{2}}{2}$)x-1,且函数f(x)是定义在R上的偶函数,
若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0恰有4个不同的实数解,
则函数y=f(x)与y=loga(x+2)在区间(-2,6)上有四个不同的交点,如下图所示:

又f(-2)=f(2)=f(6)=1,
则对于函数y=loga(x+2),
由题意可得,当x=6时的函数值小于1,
即loga8<1,
由此解得:a>8,
∴a的范围是(8,+∞)
故答案为:(8,+∞).

点评 本题考查的知识点是根的存在性及根的个数判断,指数函数与对数函数的图象与性质,其中根据方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题,是解答本题的关键,体现了转化和数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的焦点为F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),且椭圆C的下顶点到直线x+y-2=0的距离为3$\sqrt{2}$/2.
(1)求椭圆C的方程;
(2)若一直线l:y=kx+m与椭圆C相交于A、B(A、B不是椭圆C 的顶点)两点,以AB为直径的圆过椭圆C 的上顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若关于x的方程$\sqrt{1-{x}^{2}}$=lg(x-a)有正数解,则实数a的取值范围(  )
A.-10<a≤0B.-1<a≤0C.0≤a<1D.0≤a<10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)=$\frac{(x+a)lnx}{x+1}$,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)求a的值;
(2)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足a1=1,an+1-2an=3n,则an=3n-2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输出的结果是$\frac{12}{13}$,则循环体的判断框内①处应填(  )
A.11?B.12?C.13?D.14?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如右图,在△ABC中,$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{NC}$,P是BN上的一点,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AC}$,则实数m的值为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,若F关于直线y=$\sqrt{3}$x的对称点P在双曲线上,则C的离心率为(  )
A.2B.$\frac{\sqrt{5}+1}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆以坐标原点为中心,坐标轴为对称轴,以抛物线y2=16x的焦点为其中一个焦点,以双曲线$\frac{{x}^{2}}{16}$$-\frac{{y}^{2}}{9}$=1的焦点为顶点.
(1)求椭圆的标准方程;
(2)若E,F是椭圆上关于原点对称的两点,P是椭圆上任意一点,则当直线PE,PF的斜率都存在,并记为kPE、kPF时,kPE•kPF是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案