精英家教网 > 高中数学 > 题目详情
4.如右图,在△ABC中,$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{NC}$,P是BN上的一点,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AC}$,则实数m的值为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.3

分析 设$\overrightarrow{BP}$=n$\overrightarrow{BN}$,利用向量的线性运算,结合$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AC}$,可求实数m的值.

解答 解:由题意,设$\overrightarrow{BP}$=n$\overrightarrow{BN}$,
则 $\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$=$\overrightarrow{AB}$+n$\overrightarrow{BN}$=$\overrightarrow{AB}$+n($\overrightarrow{AN}$-$\overrightarrow{AB}$)=$\overrightarrow{AB}$+n($\frac{1}{4}$$\overrightarrow{NC}$-$\overrightarrow{AB}$)=$\overrightarrow{AB}$+n($\frac{1}{5}$$\overrightarrow{AC}$-$\overrightarrow{AB}$)=(1-n)$\overrightarrow{AB}$+$\frac{n}{5}$$\overrightarrow{AC}$,
又∵$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AC}$,
∴m=1-n,且$\frac{n}{5}$=$\frac{1}{6}$
解得;n=$\frac{5}{6}$,m=$\frac{1}{6}$,
故选:A

点评 本题考查向量的线性运算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某射手击中目标的概率为0.8,现给他五发子弹,规定只要击中目标立即停止射击;没击中目标,继续射击,直到子弹全部打完为止.
(1)求射手射击三次的概率.
(2)若用X表示射手停止射击后剩余子弹的个数,求变量X的分布列与期望E(X)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(x2-3,1),$\overrightarrow{b}$=(x,-y),(其中实数x和y不同时为零),当|x|<2时,有$\overrightarrow{a}$⊥$\overrightarrow{b}$,当|x|≥2时,$\overrightarrow{a}$∥$\overrightarrow{b}$.
(1)求函数关系式y=f(x);
(2)若对任意x∈(-∞,-2)∪[2,+∞),都有m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)是定义在R上的偶函数,且f(2+x)=f(2-x),当x∈[-2,0]时,f(x)=($\frac{\sqrt{2}}{2}$)x-1,若在区间(-2,6)内关于x的方程f(x)-loga(x+2)=0(a>0),有4个不同的根,则a的范围是(8,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知各项均不相等的等差数列{an}的前五项和S5=20,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和,若存在n∈N*,使得Tn-λan+1≥0成立.求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知某几何体的直观图(图1)与它的三视图(图2),其中俯视图为正三角形,其它两个视图是矩形,已知D是棱A1C1的中点.
(1)求证:BC1∥平面AB1D
(2)求二面角B1-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={1,2,3,4},N={2,4,5},则{x|x∈M∪N,x∉M∩N}=(  )
A.{2,4,5}B.{1,3,5}C.{2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=$\sqrt{2}$.
(Ⅰ)求证:AB⊥PC;
(Ⅱ)在线段AD上是否存在点Q,使得直线CQ和平面BCP所成角θ的正弦值为$\frac{{2\sqrt{7}}}{7}$?若存在,请说明点Q位置;
若不存在,请说明不存在的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若△ABC所在平面内一点P使得$6\overrightarrow{PA}+3\overrightarrow{PB}+2\overrightarrow{PC}=\vec 0$,则△PAB,△PBC,△PAC的面积的比为(  )
A.6:3:2B.3:2:6C.2:6:3D.6:2:3

查看答案和解析>>

同步练习册答案