相关习题
 0  246834  246842  246848  246852  246858  246860  246864  246870  246872  246878  246884  246888  246890  246894  246900  246902  246908  246912  246914  246918  246920  246924  246926  246928  246929  246930  246932  246933  246934  246936  246938  246942  246944  246948  246950  246954  246960  246962  246968  246972  246974  246978  246984  246990  246992  246998  247002  247004  247010  247014  247020  247028  266669 

科目: 来源: 题型:解答题

13.已知函数f(x)=x+xlnx,h(x)=x-lnx-2
(Ⅰ)试判断方程h(x)=0在区间(1,+∞)上根的情况
(Ⅱ)若k∈Z,且f(x)>kx-k对任意x>1恒成立,求k的最大值
(Ⅲ)记a1+a2+…+an=$\sum_{i=1}^{n}{a}_{i}$,若ai=2ln2+3ln3+…+klnk(k>3,k∈N*),证明$\sum_{i=3}^{n}$$\frac{1}{{a}_{i}}$<1(n>k,n∈N*

查看答案和解析>>

科目: 来源: 题型:选择题

12.一个四棱锥的侧棱长都相等,底面是正方形,其主视图如图所示,该四棱锥侧面积等于(  )
A.20B.5$\sqrt{2}$C.4($\sqrt{5}$+1)D.4$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.若平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,y)且,则$\overrightarrow{a}⊥\overrightarrow{b}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.2$\sqrt{2}$D.5

查看答案和解析>>

科目: 来源: 题型:选择题

10.计算$\frac{2i}{1-i}$(i为虚数单位)等于(  )
A.-1+iB.-1-iC.1-iD.1+i

查看答案和解析>>

科目: 来源: 题型:填空题

9.在等比数列{an}中,a1=8,a4=a3•a5,则a7=$\frac{1}{8}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在数列{an}中,已知an≥2,a1=2,an+1+an-2=$\frac{1}{{a}_{n+1}-{a}_{n}}$,n∈N*
(1)求a2的值及数列{an}的通项公式;
(2)设k∈N,k≤$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{100}-1}$<k+1,求k的值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)的定义域(0,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.把所有由“一阶比增函数”组成的集合记为A1,把所有由“二阶比增函数”组成的集合记为A2
(1)已知函数f(x)=x3-2hx2-hx,若f(x)∈A1且f(x)∉A2,求实数h的取值范围
(2)已知f(x)∈A2,且存在常数k,使得对任意的x∈(0,+∞),都有f(x)>0,求k的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数f(x)=(x-a)|x|的图象与直线y=1有且只有一个交点,则实数a的取值范围是a>-2.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知集合A={0,1,2,3,4},集合B={y|y=$\sqrt{x}$,x∈A}.则集合A∩B=(  )
A.{0}B.{0,1}C.{0,1,2}D.{0,1,2,4}

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=log22x-mlog2x+a,g(x)=x2+1.
(1)当a=1时,求f(x)在x∈[1,4]上的最小值;
(2)当a>0,m=2时,若对任意的实数t∈[1,4],均存在xi∈[1,8](i=1,2),且x1≠x2,使得$\frac{g({x}_{i}-a)+2a}{{x}_{i}}$=f(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案