精英家教网 > 高中数学 > 题目详情
11.若平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,y)且,则$\overrightarrow{a}⊥\overrightarrow{b}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.2$\sqrt{2}$D.5

分析 通过向量垂直数量积为0求出y,然后求解向量的模.

解答 解:平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,y)且,则$\overrightarrow{a}⊥\overrightarrow{b}$,
可得-2+2y=0,解得y=1,
|$\overrightarrow{b}$|=$\sqrt{(-2)^{2}+{1}^{2}}$=$\sqrt{5}$.
故选:B.

点评 本题考查向量的数量积的应用,向量垂直体积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在四面体ABCD中,AD=BD,∠ABC=90°,点E,F分别为棱AB,AC上的点,点G为棱AD的中点,且平面EFG∥平面BCD.求证:
(1)EF=$\frac{1}{2}$BC;
(2)平面EFD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知[x]表示不超过实数x的最大实数,如[-1.2]=-2,[1.2]=1,[1]=1,则函数f(x)=[x]+[2x]+[3x](0≤x≤3)的值域中不可能取到的一个正整数值是(  )
A.2B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=f(x)是R上的偶函数,对于任意的x∈R,都有f(x+4)=f(x)+f(2)成立,当x1,x2∈[0,2]且x12时,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0.
则下列命题中,正确的为①②④ (把你认为正确的命题的序号都填上)
①f(2)=0;②直线x=-4是函数y=f(x)的图象的一条对称轴;③函数y=f(x)在[-6,-4]上为增函数;④函数y=f(x)在[-6,6]上有四个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=(x-a)|x|的图象与直线y=1有且只有一个交点,则实数a的取值范围是a>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE.
(2)点M是线段EF上任意一点,求三棱锥B-ACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2,则f(9)=2,g[f(3)]=1,f[f($\frac{1}{9}$)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设x、y满足约束条件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$目标函数z=2x+y的最大值是14,若目标函数z=ax+by(a>0,b>0)的最大值为10,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆x2+(y+1)2=5上的点到直线2x-y+9=0的最大距离为3$\sqrt{5}$.

查看答案和解析>>

同步练习册答案