精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2,则f(9)=2,g[f(3)]=1,f[f($\frac{1}{9}$)]=0.

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2,代入可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2
∴f(9)=log39=2,
g[f(3)]=g(log33)=g(1)=12=1,
f[f($\frac{1}{9}$)]=f(${log}_{3}\frac{1}{9}$)=f(-2)=f(1)=log31=0.
故答案为:2;1;0

点评 本题考查的知识点是函数的值,难度不大,代入计算即可,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设m>1,在约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目标函数z=x+my取得最大值z(m)的实数对(x,y)=($\frac{1}{m+1}$,$\frac{m}{m+1}$);而当m变化时,z(m)的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+x有两个极值点;命题q:函数g(x)=x${\;}^{{a}^{2}-a}$在(0,+∞)上为增函数,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,y)且,则$\overrightarrow{a}⊥\overrightarrow{b}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.2$\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“x<1”是“log2x<0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,满足$\frac{a}{sinA}$=$\frac{b}{\sqrt{3}cosB}$.
(Ⅰ)求角B的值;
(Ⅱ)若b=3,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y∈R,则“x>y”是“|x|>|y|”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0有两个实根,且都比1大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{m}$=(cosx,sin2x),$\overrightarrow{n}$=(cosx,$\frac{\sqrt{3}}{2}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求f(x)的取值范围;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,若函数g(x)=bf(x)+c在x=A处取最大值6,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案