精英家教网 > 高中数学 > 题目详情
15.已知x,y∈R,则“x>y”是“|x|>|y|”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 举例,结合结合充分条件和必要条件的定义即可得到结论.

解答 解:若x>y,如x=1,y=-1,则|x|>|y|不成立,
故命题:“x>y”⇒“|x|>|y|”为假命题;
若|x|>|y|成立,如x=-2,y=1则x>y不成立,
故命题:“|x|>|y|”⇒“x>y”为假命题;
故x>y”是“|x|>|y|”的既不充分也不必要条件.
故选:D.

点评 本题考查的知识点是充要条件的定义,我们先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设实数x,y满足条件$\left\{\begin{array}{l}{4x-y-10≤0}\\{x-2y+8≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为12,则$\frac{8a+3b+2ab}{ab}$的最小值为(  )
A.12B.$\frac{21}{3}$C.$\frac{67}{6}$D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=(x-a)|x|的图象与直线y=1有且只有一个交点,则实数a的取值范围是a>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2,则f(9)=2,g[f(3)]=1,f[f($\frac{1}{9}$)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=x2+2ax+2,x∈R.
(Ⅰ)若函数F(x)=f[f(x)]与f(x)在x∈R时有相同的值域,求a的取值范围.
(Ⅱ)若方程f(x)+|x2-1|=2在(0,2)上有两个不同的根α,β,求a的取值范围,并证明$\frac{1}{α}+\frac{1}{β}$<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设x、y满足约束条件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$目标函数z=2x+y的最大值是14,若目标函数z=ax+by(a>0,b>0)的最大值为10,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0).过点P(-2,-4)的直线l的参数方程为$\left\{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}\right.$(t为参数).设直线l与曲线C分别交于M,N两点.若|PM|,|MN|,|PN|成等比数列,则a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆M:$\frac{x^2}{4}+\frac{y^2}{3}$=1,点F1,C分别是椭圆M的左焦点、左顶点,过点F1的直线l(不与x轴重合)交M于A,B两点.
(Ⅰ)求M的离心率及短轴长;
(Ⅱ)是否存在直线l,使得点B在以线段AC为直径的圆上,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=12x焦点的一条直线与抛物线相交于A、B两点,若|AB|=10,则线段AB的中点到y轴的距离等于(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案