相关习题
 0  247707  247715  247721  247725  247731  247733  247737  247743  247745  247751  247757  247761  247763  247767  247773  247775  247781  247785  247787  247791  247793  247797  247799  247801  247802  247803  247805  247806  247807  247809  247811  247815  247817  247821  247823  247827  247833  247835  247841  247845  247847  247851  247857  247863  247865  247871  247875  247877  247883  247887  247893  247901  266669 

科目: 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn=-n2+24n
(1)求数列的通项公式;
(2)当n为何值时,Sn达到最大?最大值是多少?

查看答案和解析>>

科目: 来源: 题型:填空题

20.在△ABC的三内角A、B、C的对应边分别为a,b,c,当a2+c2≥b2+ac时,角B的取值范围为(0°,60°].

查看答案和解析>>

科目: 来源: 题型:选择题

19.数列1×4,2×5,3×6,…,n(n+3),…则它的前n项和Sn=(  )
A.$\frac{1}{3}$n(n+1)(n+2)B.$\frac{1}{3}$n(n+1)(n+3)C.$\frac{1}{3}$n(n+1)(n+4)D.$\frac{1}{3}$n(n+1)(n+5)

查看答案和解析>>

科目: 来源: 题型:解答题

18.在△ABC中,已知b=2,a=$\frac{{2\sqrt{3}}}{3},A={30°}$,求角B,C及边c.

查看答案和解析>>

科目: 来源: 题型:选择题

17.观察式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,则可归纳出式子为(  )
A.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…<$\frac{1}{2n-1}$B.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$
C.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$D.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…$\frac{1}{{n}^{2}}$<$\frac{2n}{2n+1}$

查看答案和解析>>

科目: 来源: 题型:填空题

16.设f(x)=x3-$\frac{1}{2}{x^2}$-2x+3,当x∈[-1,2]时,f(x)<m-1恒成立,则实数m的取值范围为(6,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

15.因为对数函数y=logax是增函数(大前提),而是对数函数$y={log_{\frac{1}{3}}}x$(小前提),所以y=log${\;}_{\frac{1}{3}}$x是增函数(结论).这个推理过程中(  )
A.大前提错误导致结论错误
B.小前提错误导致结论错误
C.推理形式错误导致结论错误
D.大前提和小前提都错误导致结论错误

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=lnx-bx+c,f(x)在点(1,f(1))处的切线方程为x+y+4=0
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若在区间[$\frac{1}{2}$,5]内,恒有f(x)≥x2+lnx+kx成立,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知曲线y=x2+2x-2在点M处的切线与x轴平行,则点M的坐标是(-1,-3).

查看答案和解析>>

科目: 来源: 题型:选择题

12.用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6,当x=-4时,v4的值为(  )
A.-57B.220C.-845D.3392

查看答案和解析>>

同步练习册答案