相关习题
 0  248107  248115  248121  248125  248131  248133  248137  248143  248145  248151  248157  248161  248163  248167  248173  248175  248181  248185  248187  248191  248193  248197  248199  248201  248202  248203  248205  248206  248207  248209  248211  248215  248217  248221  248223  248227  248233  248235  248241  248245  248247  248251  248257  248263  248265  248271  248275  248277  248283  248287  248293  248301  266669 

科目: 来源: 题型:选择题

12.若数列{an}的前n项和为Sn,且满足Sn+2=3an(n∈N*),则an=(  )
A.2n-1B.nC.($\frac{3}{2}$)n-1D.2n-1

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$ax2+lnx,g(x)=-bx,设h(x)=f(x)-g(x)                     
(1)若f(x)在x=$\frac{\sqrt{2}}{2}$处取得极值,且f′(x)=g($\frac{1}{x}$)-2x,求函数h(x)的单调区间.
(2)若a=0时函数h(x)有两个不同的零点x1,x2 ①求b的取值范围;②求证:$\frac{{x}_{1}•{x}_{2}}{{e}^{2}}$>1.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知a、b∈R+,若向量$\overrightarrow{m}$=(2,12-2a)与向量$\overrightarrow{n}$=(1,2b)共线,则$\sqrt{2a+b}$+$\sqrt{a+5b}$的最大值为6.

查看答案和解析>>

科目: 来源: 题型:解答题

9.若函数f(x)=2sin(2x-$\frac{π}{6}$)+1.
(1)求函数f(x)的对称轴和单调递增区间;
(2)若x∈[-$\frac{π}{12}$,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

8.(1)已知y=f(x)的定义域为[0,2],求:①f(x2);②f(|2x-1|);③f($\sqrt{x-2}$)的定义域.
(2)已知函数f(x2-1)的定义域为[0,1],求f(x)的定义域;
(3)已知函数f(2x+1)的定义域为(0,1),求f(2x-1)的定义域;
(4)已知函数f(x+1)的定义域为[-2,3],求f($\frac{1}{x}$+2)的定义域;
(5)已知函数f(x)的定义域为[0,1],求g(x)=f(x+m)+f(x-m)(m>0)的定义域;
(6)已知函数f(x)的定义域为[-$\frac{1}{2}$,$\frac{3}{2}$],求F(x)=f(ax)+f($\frac{x}{a}$)(a>0)的定义域.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知不等式x2+bx+x>0的解集为{x|x<-2或x>-1}.
(1)求b和c的值.
(2)求不等式cx2+bx+a≤0的解集.

查看答案和解析>>

科目: 来源: 题型:选择题

6.在等比数列{an)中,a2+a3=2,a4+a5=32,则公比q的值为(  )
A.16B.4C.-4D.±4

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知向量$\overrightarrow{m}$=(a,1),$\overrightarrow{n}$=(1+sinx,acosx+b),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$.
(1)当a=1时,求f(x)的单调递增区间;
(2)当a<0时,x∈[0,π]时,f(x)的值域是[3,4],求a,b的值;
(3)当a=-b=$\sqrt{2}$时,函数y=f(x)的图象与直线y=1有交点,求相邻两个交点的最短距离.

查看答案和解析>>

科目: 来源: 题型:选择题

4.若x,y是非负实数,x2+y2≤6,则2x+y的最大值为(  )
A.$\sqrt{10}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.$\sqrt{30}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知二项式(1+$\sqrt{2}$x)n=a0+a1x+a2x2+…+anxn(x∈R,n∈N)
(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;
(2)若n为正偶数时,求证:a0+a2+a4+a6+…+an为奇数.
(3)证明:C${\;}_{n}^{1}$+2C${\;}_{n}^{2}$•2+3C${\;}_{n}^{3}$•22+…+nC${\;}_{n}^{n}$•2n-1=n•3n-1(n∈N+

查看答案和解析>>

同步练习册答案