相关习题
 0  248257  248265  248271  248275  248281  248283  248287  248293  248295  248301  248307  248311  248313  248317  248323  248325  248331  248335  248337  248341  248343  248347  248349  248351  248352  248353  248355  248356  248357  248359  248361  248365  248367  248371  248373  248377  248383  248385  248391  248395  248397  248401  248407  248413  248415  248421  248425  248427  248433  248437  248443  248451  266669 

科目: 来源: 题型:选择题

15.已知一段演绎推理:“一切奇数都能被3整除,(25+1)是奇数,所以(25+1)能被3整除”,则这段推理的 (  )
A.大前提错误B.小前提错误C.推理形式错误D.结论错误

查看答案和解析>>

科目: 来源: 题型:解答题

14.测谎仪是一种通过人的脑电波的变化,来判断被测人是否说谎的一种仪器,对于某一语言刺激,没说谎的人的脑电波一般是正弦波,而说谎的人的脑电波则是锯齿波,下面是询问某一问题时,一个没说谎的人脑电波的数据:
t00.20.40.60.8
y-4040-4
若就同一个问题询问另一个人时,得到以下脑电波数据:当t=0.1时,y=-1,当t=0.5时,y=3.6,根据这些数据,判断此人是否说谎?

查看答案和解析>>

科目: 来源: 题型:解答题

13.有甲乙两种产品,经销这两种商品所能获得的利润分别是p万元和q万元,它们与投入资金x(万元)的关系式为P=$\frac{1}{5}$x,Q=$\frac{3}{5}$$\sqrt{x}$.今有3万元资金投入这两种商品.
(1)求:经销两种商品所获得的总利润y的函数关系式.
(2)为获得最大利润,对这两种商品的资金分别投入多少时,能获得最大利润?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:填空题

12.函数f(x)=x2-2ax+3在区间[1,3]上的最大值g(a)=$\left\{\begin{array}{l}{12-6a,(a≤\frac{3}{2})}\\{4-2a,(a>\frac{3}{2})}\end{array}\right.$..

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知抛物线y2=8x,P是抛物线的动弦AB的中点.
(Ⅰ)当P的坐标为(2,3)时,求直线AB的方程;
(Ⅱ)当直线AB的斜率为1时,求线段AB的垂直平分线在x轴上的截距的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=2lnx-x+$\frac{1}{x}$.
(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)证明:当x>0时,ln(1+$\frac{1}{x}$)$<\frac{1}{\sqrt{{x}^{2}+x}}$;
(Ⅲ)证明:$\frac{1}{\sqrt{1×2}}$+$\frac{1}{\sqrt{2×3}}$+$\frac{1}{\sqrt{3×4}}$+…+$\frac{1}{\sqrt{n(n+1)}}$$>\frac{n}{n+1}$(n∈N*

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知函数f(x)=$\frac{lnx}{x}$,则f(3),f(4),f(5)由小到大排列为f(5)<f(4)<f(3).

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数f(x)=4sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期为π,设向量$\overrightarrow{a}$=(-1,f(x)),$\overrightarrow{b}$=(f(-x),1),g(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求函数f(x)的递增区间;
(2)求函数g(x)在区间[$\frac{π}{8}$,$\frac{π}{3}$]上的最大值和最小值;
(3)若x∈[0,2015π],求满足$\overrightarrow{a}⊥\overrightarrow{b}$的实数x的个数.

查看答案和解析>>

科目: 来源: 题型:解答题

7.某中学生物研究性学习小组对春季昼夜温差大小与水稻发芽率之间的关系进行研究,记录了实验室4月10日至4月14日的每天昼夜温差与每天每50颗稻籽浸泡后的发芽数,得到如下资料:
日    期4月10日4月11日4月12日4月13日4月14日
温  差x(℃)1012131411
发芽数y(颗)1113141612
(1)求这5天的发芽数的方差;
(2)根据表中的数据可知发芽数y(颗)与温差x(℃)呈线性相关,请求出发芽数y关于温差x的线性回归方程$\widehat{y}$=bx+$\widehat{a}$.
(3)若4月15日的温差为15℃,试用(2)中的回归方程估测当天50颗稻籽浸泡后的发芽数.(精确到整数部分)
(参考公式:回归直线方程式=bx+$\widehat{a}$.其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\overline{a}=\overline{y}-b\overline{x}$)

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图所示,在△ABC中,$\overrightarrow{AD}$=$\frac{2}{3}\overrightarrow{AB}$,DE∥BC交AC于E,AM是BC边上的中线,交DE于N.
(1)设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$分别表示向量$\overrightarrow{AE},\overrightarrow{DN},\overrightarrow{AM}$.
(2)设∠BAC=θ,cosθ=$\frac{1}{4}$,$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,求$\overrightarrow{CD}•\overrightarrow{AM}$的值.

查看答案和解析>>

同步练习册答案