相关习题
 0  249753  249761  249767  249771  249777  249779  249783  249789  249791  249797  249803  249807  249809  249813  249819  249821  249827  249831  249833  249837  249839  249843  249845  249847  249848  249849  249851  249852  249853  249855  249857  249861  249863  249867  249869  249873  249879  249881  249887  249891  249893  249897  249903  249909  249911  249917  249921  249923  249929  249933  249939  249947  266669 

科目: 来源: 题型:填空题

2.已知正方形ABCD的边长为12,动点M(不在平面ABCD内)满足MA⊥MB,则三棱锥A-BCM的体积的取值范围为(0,144].

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在三棱锥A-BCD中,AB=BC=CD=DA=AC,BD=$\sqrt{2}$AB,求证:平面ABD⊥平面BCD.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图.四棱锥P-ABCD中,PB⊥底面ABCD.PC与平面ABCD所成角的正切值为$\frac{1}{2}$,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.
求证:平面PCD⊥平面PBD.

查看答案和解析>>

科目: 来源: 题型:解答题

19.非负实数a1,a2,…an,满足a1a2…an=1,对于n≥4,证明$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}+\frac{3n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$≥n+3.

查看答案和解析>>

科目: 来源: 题型:填空题

18.一个正三棱锥的三条侧棱长均为1,且两两垂直,将这个正三棱锥绕着它的高线旋转60°,则旋转后的三棱锥与原三棱锥公共部分的体积等于$\frac{\sqrt{2}}{18}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知正四棱柱ABCD-A1B1C1D1中,对角线A1C=3,它的表面积是16,则它的体积是(  )
A.4B.$\frac{112}{27}$C.4或$\frac{112}{27}$D.$\frac{112}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.求证:
(1)CM∥平面PAD;
(2)平面PAB⊥平面PAD.

查看答案和解析>>

科目: 来源: 题型:选择题

15.若正方体的体对角线长为4,则正方体的表面积为(  )
A.$\frac{16}{3}$B.32C.$\frac{64\sqrt{3}}{9}$D.$\frac{128\sqrt{3}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.正四面体内镶在一个表面积为36π的球内,求这个四面体的表面积和体积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥BC,AB=BC=2,AA1=1,E为BB1的中点,求证:平面AEC1⊥平面AA1C1C.

查看答案和解析>>

同步练习册答案