相关习题
 0  249758  249766  249772  249776  249782  249784  249788  249794  249796  249802  249808  249812  249814  249818  249824  249826  249832  249836  249838  249842  249844  249848  249850  249852  249853  249854  249856  249857  249858  249860  249862  249866  249868  249872  249874  249878  249884  249886  249892  249896  249898  249902  249908  249914  249916  249922  249926  249928  249934  249938  249944  249952  266669 

科目: 来源: 题型:解答题

1.在长方体ABCD-A′B′C′D′中,AB=BC=2,过A′,C′,B三点的平面截去长方体的一个角后,得到ABCD-A′C′D′,
(Ⅰ)若DD′=3,求几何体ABCD-A′C′D′的体积;
(Ⅱ)若DD′>1,且直线A′D与平面A′BC′所成的角的正弦值为$\frac{4\sqrt{5}}{15}$,求二面角D-A′B-C′的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.若a,b∈R,比较a2+2b2 与b(a+b)的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

10.给出算法:
第一步,输入n=5.
第二步,令i=1,S=1.
第三步,判断i≤n是否成立,若不成立,输出S,结束算法;若成立,执行下一步.
第四步,令S的值乘以i,仍用S表示,令i的值增加1,仍用i表示,返回第三步.
该算法的功能是计算并输出S=1×2×3×4×5的值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.解一元二次不等式有如下几个步骤:
①计算判断式△,并判断其符号;
②化不等式为标准二次不等式;
③结合图象,写出解集;
④画出其相应的二次函数图象.
正确的顺序是②①④③.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知抛物线y2=2px(p>0)的焦点为F,直线y=2x交抛物线于O,A两点,直线AF交抛物线于另一点B,则tan∠AOB=-$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在平面直角坐标系xOy中,设直线C1:$\frac{x}{a}$+$\frac{y}{b}$=1(a>b>0)与坐标轴所围成的封闭图形的面积为1,直线C1上的点到原点O的最短距离为$\frac{2\sqrt{5}}{5}$,以曲线C1与坐标轴的交点为顶点的椭圆记为Γ.
(1)求椭圆Γ的标准方程;
(2)己知直线l:y=kx+m与椭圆Γ交于不同两点A、B,点G是线段AB中点,射线OG交轨迹Γ于点Q,且$\overrightarrow{OQ}$=λ$\overrightarrow{OG}$,λ∈R,若△AOB的面积为1,求λ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.当x∈[-2,2]时,函数f(x)=|x5-5x|的最大值为22.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知△ABC的边AB长为2a,若BC的中线为定长m,求顶点C的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:填空题

4.函数y=3x2+6x-12的单调增区间为[-1,+∞),单调减区间为(-∞,-1).

查看答案和解析>>

科目: 来源: 题型:解答题

3.设A,B是抛物线x2=2py(p>0)两点,且满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
(1)求证:直线AB经过一定点
(2)当线段AB的中点到直线y-2x=0的距离的最小值为$\frac{2\sqrt{5}}{5}$,求p的值.

查看答案和解析>>

同步练习册答案