相关习题
 0  249801  249809  249815  249819  249825  249827  249831  249837  249839  249845  249851  249855  249857  249861  249867  249869  249875  249879  249881  249885  249887  249891  249893  249895  249896  249897  249899  249900  249901  249903  249905  249909  249911  249915  249917  249921  249927  249929  249935  249939  249941  249945  249951  249957  249959  249965  249969  249971  249977  249981  249987  249995  266669 

科目: 来源: 题型:选择题

11.已知△ABC为等腰直角三角形,且CA=CB=3$\sqrt{2}$,M,N两点在线段AB上运动,且MN=2,则$\overrightarrow{CM}$•$\overrightarrow{CN}$的取值范围为(  )
A.[12,24]B.[8,12]C.[8,24]D.[8,17]

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=ax2+1,g(x)=x3+bx,其中a>0,b>0.
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在它们的交点P(2,m)处有相同的切线(P为切点),求a,b的值;
(Ⅱ)令h(x)=f(x)+g(x),若函数h(x)的单调递减区间为[-$\frac{a}{2}$,-$\frac{\sqrt{b}}{3}$],
(1)求函数h(x)在区间(-∞,-1]上的最大值t(a);
(2)若|h(x)|≤3在x∈[-2,0]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知f(x)是定义在R上的偶函数且在[0,+∞)上递增,p:f($\frac{x}{x+1}$)<f(-$\frac{1}{2}$),q:|x-a|<1,若p是q的充分不必要条件,则实数a的取值范围为(  )
A.(0,$\frac{4}{3}$)B.(-∞,0)∪($\frac{4}{3}$,+∞)C.(-∞,0]∪[$\frac{4}{3}$,+∞)D.[0,$\frac{2}{3}$]

查看答案和解析>>

科目: 来源: 题型:解答题

8.记函数f(n)=1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{n}}{n!}$(n∈N+),求证:当n为偶数时,方程fn(x)=0没有实数根;当n为奇数时,方程fn(x)=0有唯一实数根xn,且xn+2<xn

查看答案和解析>>

科目: 来源: 题型:解答题

7.若函数f(x)=$\frac{\root{3}{3x+1}}{kx^2+3k+4}$的定义域为R.求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

6.若log4x=3,则log16x等于(  )
A.$\frac{3}{2}$B.9C.$\sqrt{3}$D.64

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=ax3+(2-a)x2-x-1(a>0)
(1)若f(x)的单调递减区间为(-1,$\frac{1}{3}$),求a的值.
(2)在(1)的条件下,若点A为函数y=f(x)的图象上取得极大值的点,B为y=f(x)图象与y轴的交点,问在函数y=f(x)的图象上是否存在点C使得△ABC是AC为斜边的直角三角形?若存在,求出△ABC的面积.
(3)设x1,x2,x3为关于x的方程f(x)=0的实根,且$\frac{{x}_{1}}{{x}_{2}}$∈[$\frac{1}{2}$,2],求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知实数x、y满足|2x+3y|<$\frac{1}{3}$,|x-2y|<$\frac{1}{6}$,求证:|y|<$\frac{2}{21}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分别为AB、BC的中点.点P在以A为圆心,AD为半径的圆弧$\widehat{DE}$上变动(如图所示),若$\overrightarrow{AP}$=λ$\overrightarrow{ED}$+μ$\overrightarrow{AF}$,其中λ,μ∈R.则2λ-μ的取值范围是[-1,1].

查看答案和解析>>

科目: 来源: 题型:填空题

2.如图,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OC}$与$\overrightarrow{OA}$的夹角为30°,|$\overrightarrow{OC}$|=2$\sqrt{3}$,用$\overrightarrow{OA}$、$\overrightarrow{OB}$表示$\overrightarrow{OC}$为$\overrightarrow{OC}$=4$\overrightarrow{OA}$+2$\overrightarrow{OB}$.

查看答案和解析>>

同步练习册答案