相关习题
 0  250122  250130  250136  250140  250146  250148  250152  250158  250160  250166  250172  250176  250178  250182  250188  250190  250196  250200  250202  250206  250208  250212  250214  250216  250217  250218  250220  250221  250222  250224  250226  250230  250232  250236  250238  250242  250248  250250  250256  250260  250262  250266  250272  250278  250280  250286  250290  250292  250298  250302  250308  250316  266669 

科目: 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{-1,x<0}\end{array}\right.$,设F(x)=f(x)•(x-a)2在区间[-4,4]上的最大值为g(a),则g(a)的表达式为$\left\{\begin{array}{l}{{a}^{2},}&{a≥2}\\{(4-a)^{2},}&{a<2}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.若0<a<b,且ab=ba,求a的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在数列{an}中,a1=1,a2=2,$\frac{{a}_{n}}{{a}_{n-2}}$=(-1)n•2(n≥3).求{an}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知二次函数f(x)=ax2+x-c(其中a,c∈R),a,c的等差中项是2,a是边长为$\frac{3\sqrt{3}}{2}$的正三角形的外接圆半径.(1)求f(x)的解析式;
(2)若数列{an}满足${a_1}=1,3{a_{n+1}}=1-\frac{1}{{f({a_n}+1)-f({a_n})-\frac{3}{2}}}(n∈{N^*})$,求数列{an}的通项公式;
(3)设${b_n}=\frac{1}{a_n}$,在(2)的条件下,若数列{bn}的前n项和为Sn,求数列{Sn•cos(bnπ)}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=$\frac{{x}^{3}}{{e}^{ax}}$,g(x)=eaxf′(x)在[0,2]上单调递增(a>0).
(1)求a的最大值;
(2)在a取最大值的条件下,求证:当x1+x2=6且0<x1<3时,有f(x1)<f(x2).

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知数列{an}满足a1=$\frac{3}{5}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n∈N*
(1)求证:数列{$\frac{1}{{a}_{n}}$-1}成等比数列;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,试证明:Tn-n<1.

查看答案和解析>>

科目: 来源: 题型:解答题

1.函数f(x)是R上的偶函数,当x>0时,f(x)=$\frac{2}{x}$+x-1.
 (1)用定义证明f(x)在(0,1)上是减函数.
 (2)求当x<0时,函数的解析式.
 (3)在区间(0,1)上,不等式m-f(x)<0恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$.
(1)求函数f(x)的定义域;
(2)写出函数f(x)的值域;
(3)判断f(x)的奇偶性,并加以证明;
(4)判断f(x)的单调性,并加以证明.

查看答案和解析>>

科目: 来源: 题型:选择题

19.猜测(1-$\frac{4}{1}$)(1-$\frac{4}{9}$)…[1一$\frac{4}{(2n-1)^{2}}$]对n∈N且n≥1成立的-个表达式为 (  )
A.-$\frac{n+2}{n}$B.$\frac{2n+1}{2n-1}$C.$-\frac{2n+1}{2n-1}$D.-$\frac{n+1}{n-1}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最小值1和最大值4,设f(x)=$\frac{g(x)}{x}$.
(1)求a,b的值;
(2)若不等式f(x)-kx-4≤0在x∈[-1,0)恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案