相关习题
 0  250470  250478  250484  250488  250494  250496  250500  250506  250508  250514  250520  250524  250526  250530  250536  250538  250544  250548  250550  250554  250556  250560  250562  250564  250565  250566  250568  250569  250570  250572  250574  250578  250580  250584  250586  250590  250596  250598  250604  250608  250610  250614  250620  250626  250628  250634  250638  250640  250646  250650  250656  250664  266669 

科目: 来源: 题型:选择题

20.点A是函数f(x)=sinx的图象与x轴的一个交点(如图所示),若图中阴影部分的面积等于矩形OABC的面积,那么边AB的长等于(  )
A.$\frac{1}{π}$B.$\frac{2}{π}$C.$\frac{3}{π}$D.$\frac{4}{π}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.下列关于函数f(x)=(x2-2x)ex的判断正确的是(  )
①f(x)<0的解集是{x|0<x<2} ②f(-$\sqrt{2}$)是极小值,f($\sqrt{2}$)是极大值
③f(x)没有最大值      ④f(x)有最大值.
A.②④B.①③C.①④D.①②③

查看答案和解析>>

科目: 来源: 题型:填空题

18.∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$($\sqrt{2-{x}^{2}}$)dx=π.

查看答案和解析>>

科目: 来源: 题型:选择题

17.函数f(x)=∫${\;}_{0}^{x}$t(t-4)dt在[-1,5]上(  )
A.有最大值,无最小值B.有最大值和最小值
C.有最小值,无最大值D.无最值

查看答案和解析>>

科目: 来源: 题型:解答题

16.设数列{an}定义为a1=a,an+1=1+$\frac{1}{{a}_{1}+{a}_{2}+…+{a}_{n}-1}$,n≥1.
(Ⅰ)证明:存在正实数a,使得a1,a2,a3成等差数列;
(Ⅱ)求实数a的取值范围,使得当n≥2时,0<an<1.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知正项数列{an}满足ann+nan-1=0(n∈N*).
(1)求a1,a2
(2)判断函数f(x)=xn+nx-1,x>0的单调性;
(3)求证:0<an<1.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知数列{log2(an-1)},(n∈N*)为等差数列,且a1=3,a4=17.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和sn

查看答案和解析>>

科目: 来源: 题型:选择题

12.定义若数列{an}对任意的正整数n,都有|an-1|+|an|=d(d为常数)则称{an}为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”{an}中,a1=2,绝对公和为3,则其前2009项的和s2009的最小值为(  )
A.-2009B.-3010C.-3014D.3028

查看答案和解析>>

科目: 来源: 题型:解答题

11.对数列{an},规定{△an}为数列{an}的一阶等分数列,其中△an=an+1-an(n∈N*).对自然数k,规定{△kan}为数列{an}的k阶等分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知数列{an}的通项公式an=n2+n(n∈N*),试判断{△an},{△2an}是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足△2an-△an+1+an=-2n(n∈N*),求数列{an}的通项公式及前n项和Sn

查看答案和解析>>

同步练习册答案