相关习题
 0  250563  250571  250577  250581  250587  250589  250593  250599  250601  250607  250613  250617  250619  250623  250629  250631  250637  250641  250643  250647  250649  250653  250655  250657  250658  250659  250661  250662  250663  250665  250667  250671  250673  250677  250679  250683  250689  250691  250697  250701  250703  250707  250713  250719  250721  250727  250731  250733  250739  250743  250749  250757  266669 

科目: 来源: 题型:解答题

10.设x、y、z∈(0,+∞),且3x=4y=6z,求证:$\frac{1}{z}-\frac{1}{x}=\frac{1}{2y}$.

查看答案和解析>>

科目: 来源: 题型:选择题

9.如果命题“p且q”是假命题,“¬q”也是假命题,则(  )
A.命题“p”为真命题,命题“q”为假命题
B.命题“p”为真命题,命题“q”为真命题
C.命题“p”为假命题,命题“q”为假命题
D.命题“p”为假命题,命题“q”为真命题

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知集合A={-2,-1,0,1,2,3,4},B={x|x2-x-2>0},则A∩B=(  )
A.{0,1}B.{-1,0}C.{-2,3,4}D.{2,3,4}

查看答案和解析>>

科目: 来源: 题型:填空题

7.从装有n+1个球(其中n=1个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有C${\;}_{n+1}^{m}$种取法,这C${\;}_{n+1}^{m}$种取法可分成两类:一类是取出的m个球中,没有黑球,有$C_1^0•C_n^m$种取法,另一类是取出的m个球中有一个是黑球,有$C_1^1•C_n^{m-1}$种取法,由此可得等式:$C_1^0•C_n^m$+$C_1^1•C_n^{m-1}$=C${\;}_{n+1}^{m}$.则根据上述思想方法,当1≤k<m<n,k,m,n∈N时,化简$C_k^0$•C${\;}_{n}^{m}$+C${\;}_{k}^{1}$•C${\;}_{n}^{m-1}$+C${\;}_{k}^{2}$•C${\;}_{n}^{m-2}$+…+C${\;}_{k}^{k}$•C${\;}_{n}^{m-k}$=Cn+km.(用符号表示)

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知复数z满足|z-3-4i|=2,则|z|的最大值为7.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知$tanα=-\frac{4}{3}$,求
(1)$\frac{sinα+3cosα}{cosα+3sinα}$
(2)1+sin2α+3cosαsinα的值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知$tanα=-\frac{1}{2}$,则$\frac{{{{sin}^2}α}}{{{{sin}^2}α-sinαcosα-2{{cos}^2}α}}$的值为-$\frac{1}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.扇形的中心角为α,所在圆的半径为R,若α=60°,R=10cm,则扇形的弧长为$\frac{10}{3}$πcm.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知数列{an}为公差等于2的等差数列,a3=311,若其前m项和为m3,则m的值是(  )
A.15B.16C.17D.18

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知y=cos(ωx+φ)(ω>0,φ∈[0,2π))的部分图象如图所示,则φ=(  )
A.$\frac{3π}{2}$B.$\frac{7π}{4}$C.$\frac{π}{4}$D.0

查看答案和解析>>

同步练习册答案