相关习题
 0  250761  250769  250775  250779  250785  250787  250791  250797  250799  250805  250811  250815  250817  250821  250827  250829  250835  250839  250841  250845  250847  250851  250853  250855  250856  250857  250859  250860  250861  250863  250865  250869  250871  250875  250877  250881  250887  250889  250895  250899  250901  250905  250911  250917  250919  250925  250929  250931  250937  250941  250947  250955  266669 

科目: 来源: 题型:解答题

9.关于x的方程x2-kx+(k+3)=0的解都是正数,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.解下列不等式:
(1)$\frac{2-x}{x+4}$≤0;      
(2)x2-3ax+2a2≥0.

查看答案和解析>>

科目: 来源: 题型:解答题

7.计算:
①(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+(0.002)${\;}^{\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{3}$-$\sqrt{2}$)0  
②(-2x${\;}^{\frac{1}{4}}$y${\;}^{\frac{1}{3}}$)(3x${\;}^{-\frac{1}{2}}$y${\;}^{\frac{2}{3}}$)(-4x${\;}^{\frac{1}{4}}$y${\;}^{\frac{2}{3}}$)

查看答案和解析>>

科目: 来源: 题型:填空题

6.${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}=5,则\frac{a}{{{a^2}+1}}$=$\frac{1}{23}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知$A=\{x|y=\sqrt{{2^x}-1}\},B=\{y|y={x^2}+lga\}$,则A?B的充要条件是(  )
A.($\frac{1}{10}$,+∞)B.0<a<$\frac{1}{10}$C.0<a≤1D.a>l

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知抛物线C:x2=2py(p>0)的焦点为F(0,1),过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率$e=\frac{{\sqrt{3}}}{2}$.
(Ⅰ)分别求抛物线C和椭圆E的方程;
(Ⅱ)经过A,B两点分别作抛物线C的切线l1,l2,切线l1与l2相交于点M.证明AB⊥MF.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,$2\sqrt{3}$),C(0,$2\sqrt{3}$),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S; 
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式; 
(2)当纸片重叠部分的图形是四边形时,求t的取值范围; 
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为(阴影部分)(  )
A.B.
C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

1.某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命-和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了8次测试,且每次测试之间是相互独立的.成绩如下:(单位:个/分钟)
8081937288758384
8293708477877885
(1)用茎叶图表示这两组数据;
(2)从统计学的角度考虑,你认为选派哪位学生参加比赛合适,请说明理由;
(3)分别估计该班对甲乙两同学的成绩高于79个/分钟的概率
(参考数据:22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32=344)

查看答案和解析>>

科目: 来源: 题型:解答题

20.(1)若(x+$\frac{1}{x}$)n开式中第3项和第7项的二项式系数相等,求展开式中x-2系数.
(2)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,求a3
(3)已知(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中各项系数的和为2,求该展开式中x2的系数.

查看答案和解析>>

同步练习册答案