相关习题
 0  250801  250809  250815  250819  250825  250827  250831  250837  250839  250845  250851  250855  250857  250861  250867  250869  250875  250879  250881  250885  250887  250891  250893  250895  250896  250897  250899  250900  250901  250903  250905  250909  250911  250915  250917  250921  250927  250929  250935  250939  250941  250945  250951  250957  250959  250965  250969  250971  250977  250981  250987  250995  266669 

科目: 来源: 题型:解答题

11.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象如图所示.
(1)求f(x)的解析式;
(2)当x∈[0,$\frac{π}{2}$]时,求函数g(x)=f(x+$\frac{π}{6}$)-f(x+$\frac{π}{3}$)的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.抛物线y2=4x的焦点作倾角为60°的直线交抛物线与AB两点.问是否在抛物线上存在一点M,△ABM是以AB为斜边的Rt△,存在,求出点M 的坐标,不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.比较下列各组数的大小:
(1)3${\;}^{-\frac{5}{2}}$和3.1${\;}^{-\frac{5}{2}}$;
(2)-8${\;}^{-\frac{7}{8}}$和一($\frac{1}{9}$)${\;}^{\frac{7}{8}}$;
(3)(-$\frac{2}{3}$)${\;}^{-\frac{2}{3}}$和(-$\frac{π}{6}$)${\;}^{-\frac{2}{3}}$;
(4)4.1${\;}^{\frac{2}{5}}$,3.8${\;}^{-\frac{2}{3}}$和(一1.9)${\;}^{\frac{3}{5}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.求下列函数的定义域:
(1)y=logx+1(16-4x
(2)y=$\frac{\sqrt{{x}^{2}-4}}{lg{(x}^{2}+2x-3)}$;
(3)y=$\sqrt{1-lo{g}_{a}(x-a)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=2+$\frac{m}{{2}^{x}-1}$(m∈R)为奇函数.
(1)求m的值;
(2)求函数y=f(x)的单调区间,并给予证明;
(3)记g(x)=(x2-1)f(log2x)+k•x2,若函数y=g(x)在区间(0,1)上单调递增,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

6.若数列{an}的前n项和Sn=n2+1 则a1+a9等于(  )
A.18B.19C.20D.21

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N*),且a2=11.
(1)证明数列{an}是等差数列,并求其前n项和Sn
(2)设数列{bn}满足bn=$\sqrt{\frac{n}{{S}_{n}}}$,求证:b1+b2+…+bn<$\frac{2}{3}$$\sqrt{3n+2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.设二次函数y=f(x)的最大值为9,且f(3)=f(-1)=5,
(1)求f(x)的解析式;
(2)求f(x)在[0,4]上的最值.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知f(x-1)=2x+1,则f(3)的值是(  )
A.5B.9C.7D.8

查看答案和解析>>

科目: 来源: 题型:选择题

2.函数f(x)=x2-mx+5在区间[-2,+∞)上是增函数,在区间(-∞,-2)上是减函数,实数m的值等于(  )
A.2B.-2C.8D.-4

查看答案和解析>>

同步练习册答案