相关习题
 0  251536  251544  251550  251554  251560  251562  251566  251572  251574  251580  251586  251590  251592  251596  251602  251604  251610  251614  251616  251620  251622  251626  251628  251630  251631  251632  251634  251635  251636  251638  251640  251644  251646  251650  251652  251656  251662  251664  251670  251674  251676  251680  251686  251692  251694  251700  251704  251706  251712  251716  251722  251730  266669 

科目: 来源: 题型:解答题

7.某滨海高档住宅小区给每一户业主均提供两套供水方案,一是供应市政自来水,每吨自来水的水费是2元;方案二是限最供应10吨海底岩层中的温泉水,苦温泉水用水量不超过5吨.则按基本价每吨8元收取.超过5吨不超过8吨的部分按基本价的1.5倍收取,超过8吨不超过10吨的部分按基本价的2倍收取.
(1)试写出温泉水用水费y(元)与其用水量x(吨)之间的函数关系式;
(2)若业主小王缴纳10月份的物业费时发现一共用水16吨,被收取的费用为72元,那么他当月的自来水与温泉水用水量各为多少吨?

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}是空间的一个基底,若λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$+v$\overrightarrow{{e}_{3}}$=0,则λ22+v2=0.

查看答案和解析>>

科目: 来源: 题型:解答题

5.若不等式x2+1≥ax+b≥$\frac{3}{2}$x${\;}^{\frac{2}{3}}$对任意的x∈[0,+∞)恒成立.求实数b的取值范围以及a与b满足的关系式.

查看答案和解析>>

科目: 来源: 题型:选择题

4.在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上取三点,其横坐标满足x1+x3=2x2,三点与某一焦点的连线段长分别为r1,r2,r3.则r1,r2,r3满足(  )
A.r1,r2,r3成等差数列B.$\frac{1}{{r}_{1}}$+$\frac{1}{{r}_{2}}$=$\frac{2}{{r}_{3}}$
C.r1,r2,r3成等比数列D.以上结论全不对

查看答案和解析>>

科目: 来源: 题型:解答题

3.在直角坐标系xOy中已知点A(1,1),B(3,3),C(4,2).
(1)若$\overrightarrow{OQ}$=λ1$\overrightarrow{OC}$+λ2$\overrightarrow{OB}$,(λ1,λ2∈R,且满足λ12=1.写出Q的轨迹方程(可以只写结果);
(2)点P(x,y)在三角形ABC三边围成的区域内(含边界),若有$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R).用x,y表示m+n,并求m+n的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

2.若$\overrightarrow{a}$=(3,4),则与$\overrightarrow{a}$共线的单位向量是(  )
A.(3,4)B.($\frac{3}{5}$,$\frac{4}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$)D.(1,1)

查看答案和解析>>

科目: 来源: 题型:解答题

1.定义在R上的偶函数在区间(-∞,0]上单调递增,解不等式:f(a+1)<f(a2+2a+1).

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并证明你的结论;
(3)若f(2)=2,g(n)=$\frac{f({2}^{-n})}{n}$(n∈N*),求g(n)的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

19.己知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=21og2(1-x).
(1)求函数f(x)及g(x)的解析式;
(2)用函数单调性的定义证明:函数g(x)在(0,1)上是减函数;
(3)若关于x的方程f(2x)=m有解,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

18.k>3是方程$\frac{{x}^{2}}{k-3}-\frac{{y}^{2}}{k-7}$=1表示的曲线是椭圆的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案