科目: 来源: 题型:
【题目】根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图.
(1)已知
、
,
三个年龄段的上网购物者人数成等差数列,求
,
的值;
(2)该电子商务平台将年龄在
之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放80元的代金券.已经采用分层抽样的方式从参与调查的1000位上网购物者中抽取了10人,现在要在这10人中随机抽取3人进行回访,求此三人获得代金券总和
的分布列与数学期望.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在长方体
中,
,
是棱
上的一点.
![]()
(1)求证:
平面
;
(2)求证:
;
(3)若
是棱
的中点,在棱
上是否存在点
,使得
平面
?若存在,求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,游客从某旅游景区的景点
处下上至
处有两种路径.一种是从
沿直线步行到
,另一种是先从
沿索道乘缆车到
,然后从
沿直线步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
,假设缆车匀速直线运动的速度为
,山路
长为1260
,经测量
,
.
![]()
(1)求索道
的长;
(2)问:乙出发多少
后,乙在缆车上与甲的距离最短?
(3)为使两位游客在
处互相等待的时间不超过
,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目: 来源: 题型:
【题目】某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中的a值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
,
,
).
(1)若
的部分图像如图所示,求
的解析式;
(2)在(1)的条件下,求最小正实数
,使得函数
的图象向左平移
个单位后所对应的函数是偶函数;
(3)若
在
上是单调递增函数,求
的最大值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:某污水处理厂要在一个矩形污水处理池(
)的池底水平铺设污水净化管道(
是直角顶点)来处理污水,管道越长污水净化效果越好,设计要求管道的的接口
是
的中点,
分别落在线段
上。已知
米,
米,记
.
![]()
(1)试将污水净化管道的长度
表示为
的函数,并写出定义域;
(2)若
,求此时管道的长度
;
(3)当
取何值时,污水净化效果最好?并求出此时管道的长度。
查看答案和解析>>
科目: 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:
)满足关系
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
达到最小,并求最小值。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
的最小正周期为
.
(1)求函数
的单调增区间;
(2)将函数
的图象向左平移
个单位,再向上平移1个单位,得到函数
的图象,若
在
上至少含有10个零点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com